These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 30607744)
41. Botanical insecticides for controlling agricultural pests: piperamides and the Colorado Potato Beetle Leptinotarsa decemlineata say (Coleoptera: Chrysomelidae). Scott IM; Jensen H; Scott JG; Isman MB; Arnason JT; Philogène BJ Arch Insect Biochem Physiol; 2003 Dec; 54(4):212-25. PubMed ID: 14635182 [TBL] [Abstract][Full Text] [Related]
42. Pathogen and Pest Responses Are Altered Due to RNAi-Mediated Knockdown of GLYCOALKALOID METABOLISM 4 in Solanum tuberosum. Paudel JR; Davidson C; Song J; Maxim I; Aharoni A; Tai HH Mol Plant Microbe Interact; 2017 Nov; 30(11):876-885. PubMed ID: 28786312 [TBL] [Abstract][Full Text] [Related]
43. Colorado potato beetle (Coleoptera: Chrysomelidae) feeding, development, and survival to adulthood after continuous exposure to Bacillus thuringiensis subsp. tenebrionis-treated potato foliage from the field. Nault BA; Costa SD; Kennedy GG J Econ Entomol; 2000 Feb; 93(1):149-56. PubMed ID: 14658525 [TBL] [Abstract][Full Text] [Related]
44. Protein complexes from edible mushrooms as a sustainable potato protection against coleopteran pests. Pogačar K; Grundner M; Žigon P; Coll A; Panevska A; Lukan T; Petek M; Razinger J; Gruden K; Sepčić K Plant Biotechnol J; 2024 Sep; 22(9):2518-2529. PubMed ID: 38733093 [TBL] [Abstract][Full Text] [Related]
45. RNA interference targeting Ras GTPase gene Ran causes larval and adult lethality in Leptinotarsa decemlineata. Shen CH; Jin L; Fu KY; Guo WC; Li GQ Pest Manag Sci; 2022 Sep; 78(9):3849-3858. PubMed ID: 35104039 [TBL] [Abstract][Full Text] [Related]
46. Effects of Potato Cultivars on Some Physiological Processes of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Mardani-Talaee M; Zibaee A; Nouri-Ganbalani G; Rahimi V; Tajmiri P J Econ Entomol; 2015 Oct; 108(5):2373-82. PubMed ID: 26453726 [TBL] [Abstract][Full Text] [Related]
47. [Expression of a partially modified delta-endotoxin gene from Bacillus thuringiensis var. tenebrionis in transgenic potato plants]. Gulina IV; Shul'ga OA; Mironov MV; Revenkova EV; Kraev AS; Pozmogova GE; Iakovleva GA; Skriabin KG Mol Biol (Mosk); 1994; 28(5):1166-75. PubMed ID: 7990839 [TBL] [Abstract][Full Text] [Related]
48. Modern Techniques in Colorado Potato Beetle ( Kadoić Balaško M; Mikac KM; Bažok R; Lemic D Insects; 2020 Sep; 11(9):. PubMed ID: 32882790 [TBL] [Abstract][Full Text] [Related]
49. RNA interference targeting ecdysone receptor blocks the larval-pupal transition in Henosepilachna vigintioctopunctata. Wu JJ; Mu LL; Kang WN; Ze LJ; Shen CH; Jin L; Anjum AA; Li GQ Insect Sci; 2021 Apr; 28(2):419-429. PubMed ID: 32162469 [TBL] [Abstract][Full Text] [Related]
50. The insect ecdysone receptor is a good potential target for RNAi-based pest control. Yu R; Xu X; Liang Y; Tian H; Pan Z; Jin S; Wang N; Zhang W Int J Biol Sci; 2014; 10(10):1171-80. PubMed ID: 25516715 [TBL] [Abstract][Full Text] [Related]
51. Length-dependent accumulation of double-stranded RNAs in plastids affects RNA interference efficiency in the Colorado potato beetle. He W; Xu W; Xu L; Fu K; Guo W; Bock R; Zhang J J Exp Bot; 2020 May; 71(9):2670-2677. PubMed ID: 31903493 [TBL] [Abstract][Full Text] [Related]
52. Silencing a Myzus persicae Macrophage Inhibitory Factor by Plant-Mediated RNAi Induces Enhanced Aphid Mortality Coupled with Boosted RNAi Efficacy in Transgenic Potato Lines. Murtaza S; Tabassum B; Tariq M; Riaz S; Yousaf I; Jabbar B; Khan A; Samuel AO; Zameer M; Nasir IA Mol Biotechnol; 2022 Oct; 64(10):1152-1163. PubMed ID: 35460447 [TBL] [Abstract][Full Text] [Related]
53. Synthesis of active oryzacystatin I in transgenic potato plants. Benchekroun A; Michaud D; Nguyen-Quoc B; Overney S; Desjardins Y; Yelle S Plant Cell Rep; 1995 Jun; 14(9):585-8. PubMed ID: 24185602 [TBL] [Abstract][Full Text] [Related]
54. Bitrophic and tritrophic effects of Bt Cry3A transgenic potato on beneficial, non-target, beetles. Ferry N; Mulligan EA; Majerus ME; Gatehouse AM Transgenic Res; 2007 Dec; 16(6):795-812. PubMed ID: 17415673 [TBL] [Abstract][Full Text] [Related]
55. Expression of an engineered synthetic cry2Aa (D42/K63F/K64P) gene of Bacillus thuringiensis in marker free transgenic tobacco facilitated full-protection from cotton leaf worm (S. littoralis) at very low concentration. Gayen S; Mandal CC; Samanta MK; Dey A; Sen SK World J Microbiol Biotechnol; 2016 Apr; 32(4):62. PubMed ID: 26925624 [TBL] [Abstract][Full Text] [Related]
56. Artificial diets for rearing the Colorado potato beetle, Leptinotarsa decemlineata. Gelman DB; Bell RA; Liska LJ; Hu JS J Insect Sci; 2001; 1():7. PubMed ID: 15455067 [TBL] [Abstract][Full Text] [Related]
57. Silencing of multiple target genes via ingestion of dsRNA and PMRi affects development and survival in Helicoverpa armigera. Sharif MN; Iqbal MS; Alam R; Awan MF; Tariq M; Ali Q; Nasir IA Sci Rep; 2022 Jun; 12(1):10405. PubMed ID: 35729318 [TBL] [Abstract][Full Text] [Related]
58. Larvicidal Cry proteins from Bacillus thuringiensis are released in root exudates of transgenic B. thuringiensis corn, potato, and rice but not of B. thuringiensis canola, cotton, and tobacco. Saxena D; Stewart CN; Altosaar I; Shu Q; Stotzky G Plant Physiol Biochem; 2004 May; 42(5):383-7. PubMed ID: 15191740 [TBL] [Abstract][Full Text] [Related]
59. Assessment on effects of transplastomic potato plants expressing Colorado potato beetle β-Actin double-stranded RNAs for three non-target pests. Ren B; Cao J; He Y; Yang S; Zhang J Pestic Biochem Physiol; 2021 Oct; 178():104909. PubMed ID: 34446185 [TBL] [Abstract][Full Text] [Related]
60. Influence of plant development and environment on transgene expression in potato and consequences for insect resistance. Down RE; Ford L; Bedford SJ; Gatehouse LN; Newell C; Gatehouse JA; Gatehouse AM Transgenic Res; 2001 Jun; 10(3):223-36. PubMed ID: 11437279 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]