These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 30607954)

  • 61. A capacitive humidity sensor based on all-protein embedded with gold nanoparticles @ carbon composite for human respiration detection.
    Ma L; Patil A; Wu R; Zhang Y; Meng Z; Zhang W; Kong L; Liu XY; Wang J
    Nanotechnology; 2021 May; 32(19):19LT01. PubMed ID: 33540394
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fabrication of In(0.75)Zn(1.5)Sn(1.0) (IZTO) Thin-Film Transistors Using Solution-Processable Materials and PZT Inkjet-Printing.
    Lee TK; Liuand CT; Lee WH
    J Nanosci Nanotechnol; 2017 Jan; 17(1):363-9. PubMed ID: 29620836
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Inkjet-Printed Membrane for a Capacitive Acoustic Sensor: Development and Characterization Using Laser Vibrometer.
    Haque RI; Ogam E; Benaben P; Boddaert X
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28481267
    [TBL] [Abstract][Full Text] [Related]  

  • 64. TiO(2)/LiCl-based nanostructured thin film for humidity sensor applications.
    Buvailo AI; Xing Y; Hines J; Dollahon N; Borguet E
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):528-33. PubMed ID: 21284374
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Humidity sensors using in situ synthesized sodium polystyrenesulfonate/ZnO nanocomposites.
    Li Y; Yang MJ; She Y
    Talanta; 2004 Mar; 62(4):707-12. PubMed ID: 18969352
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Real-time Humidity Sensor Based on Microwave Resonator Coupled with PEDOT:PSS Conducting Polymer Film.
    Park JK; Kang TG; Kim BH; Lee HJ; Choi HH; Yook JG
    Sci Rep; 2018 Jan; 8(1):439. PubMed ID: 29323214
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Inkjet-Printed Temperature Sensors Characterized according to Standards.
    Jäger J; Schwenck A; Walter D; Bülau A; Gläser K; Zimmermann A
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365843
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Humidity sensors printed on recycled paper and cardboard.
    Mraović M; Muck T; Pivar M; Trontelj J; Pleteršek A
    Sensors (Basel); 2014 Jul; 14(8):13628-43. PubMed ID: 25072347
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Printed microwells with highly stable thin-film enzyme coatings for point-of-care multiplex bioassay of blood samples.
    Zhang L; Cao X; Wang L; Zhao X; Zhang S; Wang P
    Analyst; 2015 Jun; 140(12):4105-13. PubMed ID: 25893863
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Profile control of inkjet printed silver electrodes and their application to organic transistors.
    Fukuda K; Sekine T; Kumaki D; Tokito S
    ACS Appl Mater Interfaces; 2013 May; 5(9):3916-20. PubMed ID: 23547936
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High-Performance Colorimetric Humidity Sensors Based on Konjac Glucomannan.
    Momtaz M; Chen J
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):54104-54116. PubMed ID: 33185427
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fabrication and Evaluation of a Novel Non-Invasive Stretchable and Wearable Respiratory Rate Sensor Based on Silver Nanoparticles Using Inkjet Printing Technology.
    Al-Halhouli A; Al-Ghussain L; El Bouri S; Liu H; Zheng D
    Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31540494
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Zinc oxide nanoparticle-doped nanoporous solgel fiber as a humidity sensor with enhanced sensitivity and large linear dynamic range.
    Aneesh R; Khijwania SK
    Appl Opt; 2013 Aug; 52(22):5493-9. PubMed ID: 23913070
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Low-Cost Strain Gauge Displacement Sensor Fabricated via Shadow Mask Printing.
    Yi Y; Wang B; Bermak A
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671560
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Online oxygen monitoring using integrated inkjet-printed sensors in a liver-on-a-chip system.
    Moya A; Ortega-Ribera M; Guimerà X; Sowade E; Zea M; Illa X; Ramon E; Villa R; Gracia-Sancho J; Gabriel G
    Lab Chip; 2018 Jul; 18(14):2023-2035. PubMed ID: 29892739
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Humidity Sensors with Shielding Electrode Under Interdigitated Electrode.
    Liu H; Wang Q; Sheng W; Wang X; Zhang K; Du L; Zhou J
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30736294
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fabrication of Eco-Friendly Wearable Strain Sensor Arrays via Facile Contact Printing for Healthcare Applications.
    Wu SD; Hsu SH; Ketelsen B; Bittinger SC; Schlicke H; Weller H; Vossmeyer T
    Small Methods; 2023 Sep; 7(9):e2300170. PubMed ID: 37154264
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Review on Humidity, Temperature and Strain Printed Sensors-Current Trends and Future Perspectives.
    Barmpakos D; Kaltsas G
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499146
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Inkjet-printed gold nanoparticle chemiresistors: influence of film morphology and ionic strength on the detection of organics dissolved in aqueous solution.
    Chow E; Herrmann J; Barton CS; Raguse B; Wieczorek L
    Anal Chim Acta; 2009 Jan; 632(1):135-42. PubMed ID: 19100893
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Inkjet-Printed Biofunctional Thermo-Plasmonic Interfaces for Patterned Neuromodulation.
    Kang H; Lee GH; Jung H; Lee JW; Nam Y
    ACS Nano; 2018 Feb; 12(2):1128-1138. PubMed ID: 29402086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.