These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30608055)

  • 1. Form-function relationship in artificial lateral lines.
    Kaldenbach F; Klein A; Bleckmann H
    Bioinspir Biomim; 2019 Jan; 14(2):026001. PubMed ID: 30608055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drag force acting on a neuromast in the fish lateral line trunk canal. II. Analytical modelling of parameter dependencies.
    Humphrey JA
    J R Soc Interface; 2009 Jul; 6(36):641-53. PubMed ID: 18926966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What We Can Learn from Artificial Lateral Line Sensor Arrays.
    Klein AT; Kaldenbach F; Rüter A; Bleckmann H
    Adv Exp Med Biol; 2016; 875():539-45. PubMed ID: 26611002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functional significance of lateral line canal morphology on the trunk of the marine teleost Xiphister atropurpureus (Stichaeidae).
    Klein A; Münz H; Bleckmann H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Sep; 199(9):735-49. PubMed ID: 23824224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.
    Asadnia M; Kottapalli AG; Miao J; Warkiani ME; Triantafyllou MS
    J R Soc Interface; 2015 Oct; 12(111):20150322. PubMed ID: 26423435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. μ-Biomimetic flow-sensors--introducing light-guiding PDMS structures into MEMS.
    Herzog H; Klein A; Bleckmann H; Holik P; Schmitz S; Siebke G; Tätzner S; Lacher M; Steltenkamp S
    Bioinspir Biomim; 2015 Apr; 10(3):036001. PubMed ID: 25879762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drag force acting on a neuromast in the fish lateral line trunk canal. I. Numerical modelling of external-internal flow coupling.
    Barbier C; Humphrey JA
    J R Soc Interface; 2009 Jul; 6(36):627-40. PubMed ID: 18926967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity of neuromasts in a fish without lateral line canals: the pufferfish (
    Li C; Wang X; Wu J; Zhang X; Fan C; Guo H; Song J
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 29997160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired all-optical artificial neuromast for 2D flow sensing.
    Wolf BJ; Morton JAS; MacPherson WN; van Netten SM
    Bioinspir Biomim; 2018 Feb; 13(2):026013. PubMed ID: 29334081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Function of lateral line canal morphology.
    Klein A; Bleckmann H
    Integr Zool; 2015 Jan; 10(1):111-21. PubMed ID: 24920149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.
    Abels C; Qualtieri A; De Vittorio M; Megill WM; Rizzi F
    Bioinspir Biomim; 2016 Jun; 11(3):035006. PubMed ID: 27257144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pressure difference sensor inspired by fish canal lateral line.
    Sharif MA; Tan X
    Bioinspir Biomim; 2019 Jul; 14(5):055003. PubMed ID: 31282390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on an Artificial Lateral Line System Based on a Bionic Hair Sensor with Resonant Readout.
    Yang B; Zhang T; Liang Z; Lu C
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31671895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Touch at a distance sensing: lateral-line inspired MEMS flow sensors.
    Prakash Kottapalli AG; Asadnia M; Miao J; Triantafyllou M
    Bioinspir Biomim; 2014 Nov; 9(4):046011. PubMed ID: 25378298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolution improvement of dipole source localization for artificial lateral lines based on multiple signal classification.
    Ji M; Zhang Y; Zheng X; Lin X; Liu G; Qiu J
    Bioinspir Biomim; 2018 Dec; 14(1):016016. PubMed ID: 30523867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear estimation-based dipole source localization for artificial lateral line systems.
    Abdulsadda AT; Tan X
    Bioinspir Biomim; 2013 Jun; 8(2):026005. PubMed ID: 23538856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Man-made flows from a fish's perspective: autonomous classification of turbulent fishway flows with field data collected using an artificial lateral line.
    Tuhtan JA; Fuentes-Perez JF; Toming G; Schneider M; Schwarzenberger R; Schletterer M; Kruusmaa M
    Bioinspir Biomim; 2018 May; 13(4):046006. PubMed ID: 29629711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals.
    Klein A; Bleckmann H
    Beilstein J Nanotechnol; 2011; 2():276-83. PubMed ID: 21977440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial lateral line with biomimetic neuromasts to emulate fish sensing.
    Yang Y; Nguyen N; Chen N; Lockwood M; Tucker C; Hu H; Bleckmann H; Liu C; Jones DL
    Bioinspir Biomim; 2010 Mar; 5(1):16001. PubMed ID: 20061601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors.
    Dagamseh A; Wiegerink R; Lammerink T; Krijnen G
    J R Soc Interface; 2013 Jun; 10(83):20130162. PubMed ID: 23594816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.