BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30608094)

  • 41. The secondary coordination sphere and axial ligand effects on oxygen reduction reaction by iron porphyrins: a DFT computational study.
    Ohta T; Nagaraju P; Liu JG; Ogura T; Naruta Y
    J Biol Inorg Chem; 2016 Sep; 21(5-6):745-55. PubMed ID: 27501847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quick and Easy Method to Dramatically Improve the Electrochemical CO
    Kosugi K; Kondo M; Masaoka S
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):22070-22074. PubMed ID: 34347328
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulation of Self-Assembly Enhances the Catalytic Activity of Iron Porphyrin for CO
    Tasaki M; Okabe Y; Iwami H; Akatsuka C; Kosugi K; Negita K; Kusaka S; Matsuda R; Kondo M; Masaoka S
    Small; 2021 Jun; 17(22):e2006150. PubMed ID: 33690969
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular Engineering of Co
    Bao W; Huang S; Tranca D; Feng B; Qiu F; Rodríguez-Hernández F; Ke C; Han S; Zhuang X
    ChemSusChem; 2022 Apr; 15(8):e202200090. PubMed ID: 35229489
    [TBL] [Abstract][Full Text] [Related]  

  • 45. O2 reduction reaction by biologically relevant anionic ligand bound iron porphyrin complexes.
    Samanta S; Das PK; Chatterjee S; Sengupta K; Mondal B; Dey A
    Inorg Chem; 2013 Nov; 52(22):12963-71. PubMed ID: 24171513
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Implanting Numerous Hydrogen-Bonding Networks in a Cu-Porphyrin-Based Nanosheet to Boost CH
    Wang YR; Liu M; Gao GK; Yang YL; Yang RX; Ding HM; Chen Y; Li SL; Lan YQ
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):21952-21958. PubMed ID: 34387026
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Boosting Electroreduction of CO
    Wu QJ; Si DH; Wu Q; Dong YL; Cao R; Huang YB
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202215687. PubMed ID: 36424351
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Thiourea Tether in the Second Coordination Sphere as a Binding Site for CO
    Haviv E; Azaiza-Dabbah D; Carmieli R; Avram L; Martin JML; Neumann R
    J Am Chem Soc; 2018 Oct; 140(39):12451-12456. PubMed ID: 30207468
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Turning on the Protonation-First Pathway for Electrocatalytic CO
    Ngo KT; McKinnon M; Mahanti B; Narayanan R; Grills DC; Ertem MZ; Rochford J
    J Am Chem Soc; 2017 Feb; 139(7):2604-2618. PubMed ID: 28118005
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rational Design of Mononuclear Iron Porphyrins for Facile and Selective 4e
    Bhunia S; Rana A; Roy P; Martin DJ; Pegis ML; Roy B; Dey A
    J Am Chem Soc; 2018 Aug; 140(30):9444-9457. PubMed ID: 29975839
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydroxide Ligands Cooperate with Catalytic Centers in Metal-Organic Frameworks for Efficient Photocatalytic CO
    Wang Y; Huang NY; Shen JQ; Liao PQ; Chen XM; Zhang JP
    J Am Chem Soc; 2018 Jan; 140(1):38-41. PubMed ID: 29258308
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Understanding the Interplay of the Brønsted Acidity of Catalyst Ancillary Groups and the Solution Components in Iron-porphyrin-Mediated Carbon Dioxide Reduction.
    Sonea A; Crudo NR; Warren JJ
    J Am Chem Soc; 2024 Feb; 146(6):3721-3731. PubMed ID: 38307036
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DFT and Empirical Considerations on Electrocatalytic Water/Carbon Dioxide Reduction by CoTMPyP in Neutral Aqueous Solutions*.
    Bochlin Y; Ben-Eliyahu Y; Kadosh Y; Kozuch S; Zilbermann I; Korin E; Bettelheim A
    Chemphyschem; 2020 Dec; 21(24):2644-2650. PubMed ID: 33142035
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Unified Electro- and Photocatalytic CO
    Fernández S; Franco F; Casadevall C; Martin-Diaconescu V; Luis JM; Lloret-Fillol J
    J Am Chem Soc; 2020 Jan; 142(1):120-133. PubMed ID: 31820956
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Underevaluated Solvent Effects in Electrocatalytic CO
    Zhao B; Lei H; Wang N; Xu G; Zhang W; Cao R
    Chemistry; 2020 Mar; 26(18):4007-4012. PubMed ID: 31403233
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO
    Huo S; Weng Z; Wu Z; Zhong Y; Wu Y; Fang J; Wang H
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28519-28526. PubMed ID: 28786653
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Encapsulation of Single Iron Sites in a Metal-Porphyrin Framework for High-Performance Photocatalytic CO
    Wang SS; Huang HH; Liu M; Yao S; Guo S; Wang JW; Zhang ZM; Lu TB
    Inorg Chem; 2020 May; 59(9):6301-6307. PubMed ID: 32286802
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts.
    Ghosh S; Hogarth G; Hollingsworth N; Holt KB; Richards I; Richmond MG; Sanchez BE; Unwin D
    Dalton Trans; 2013 May; 42(19):6775-92. PubMed ID: 23503781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bimetallic Cooperativity and Hydrogen Bonding Allow Efficient Reduction of CO
    Dey A
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202301760. PubMed ID: 36965024
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metal-free reduction of CO2 with hydroboranes: two efficient pathways at play for the reduction of CO2 to methanol.
    Das Neves Gomes C; Blondiaux E; Thuéry P; Cantat T
    Chemistry; 2014 Jun; 20(23):7098-106. PubMed ID: 24771681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.