BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30608101)

  • 1. Bacterial biofilm destruction by size/surface charge-adaptive micelles.
    Chen M; Wei J; Xie S; Tao X; Zhang Z; Ran P; Li X
    Nanoscale; 2019 Jan; 11(3):1410-1422. PubMed ID: 30608101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-demand pH-sensitive surface charge-switchable polymeric micelles for targeting Pseudomonas aeruginosa biofilms development.
    Chen X; Guo R; Wang C; Li K; Jiang X; He H; Hong W
    J Nanobiotechnology; 2021 Apr; 19(1):99. PubMed ID: 33836750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms.
    Liu Y; Busscher HJ; Zhao B; Li Y; Zhang Z; van der Mei HC; Ren Y; Shi L
    ACS Nano; 2016 Apr; 10(4):4779-89. PubMed ID: 26998731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elaboration on the architecture of pH-sensitive surface charge-adaptive micelles with enhanced penetration and bactericidal activity in biofilms.
    Guo R; Li K; Tian B; Wang C; Chen X; Jiang X; He H; Hong W
    J Nanobiotechnology; 2021 Aug; 19(1):232. PubMed ID: 34362397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models.
    Liu Y; Ren Y; Li Y; Su L; Zhang Y; Huang F; Liu J; Liu J; van Kooten TG; An Y; Shi L; van der Mei HC; Busscher HJ
    Acta Biomater; 2018 Oct; 79():331-343. PubMed ID: 30172935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiofilm Platform based on the Combination of Antimicrobial Polymers and Essential Oils.
    Namivandi-Zangeneh R; Yang Y; Xu S; Wong EHH; Boyer C
    Biomacromolecules; 2020 Jan; 21(1):262-272. PubMed ID: 31657209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms.
    Zhao Z; Ding C; Wang Y; Tan H; Li J
    Biomater Sci; 2019 Mar; 7(4):1643-1651. PubMed ID: 30723851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Step-by-step dual stimuli-responsive nanoparticles for efficient bacterial biofilm eradication.
    Fan Q; Wang C; Guo R; Jiang X; Li W; Chen X; Li K; Hong W
    Biomater Sci; 2021 Oct; 9(20):6889-6902. PubMed ID: 34519743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial Micelles with Vancomycin-Mediated Targeting and pH/Lipase-Triggered Release of Antibiotics.
    Chen M; Xie S; Wei J; Song X; Ding Z; Li X
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36814-36823. PubMed ID: 30298721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Destruction of
    Paunova-Krasteva T; Haladjova E; Petrov P; Forys A; Trzebicka B; Topouzova-Hristova T; R Stoitsova S
    Biofouling; 2020 Jul; 36(6):679-695. PubMed ID: 32741293
    [No Abstract]   [Full Text] [Related]  

  • 11. On-Demand Multifunctional Electrostatic Complexation for Synergistic Eradication of MRSA Biofilms.
    Jiang X; Li W; Chen X; Wang C; Guo R; Hong W
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10200-10211. PubMed ID: 35179370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terpyridine-Micelles for Inhibiting Bacterial Biofilm Development.
    Qiao J; Purro M; Liu Z; Xiong MP
    ACS Infect Dis; 2018 Sep; 4(9):1346-1354. PubMed ID: 29974746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipase and pH-responsive diblock copolymers featuring fluorocarbon and carboxyl betaine for methicillin-resistant staphylococcus aureus infections.
    Xiao J; Yin M; Yang M; Ren J; Liu C; Lian J; Lu X; Jiang Y; Yao Y; Luo J
    J Control Release; 2024 May; 369():39-52. PubMed ID: 38508523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of polycationic micelles as an efficient delivery system of antibiotics for overcoming the biological barriers to reverse multidrug resistance in Escherichia coli.
    Guo R; Li K; Qin J; Niu S; Hong W
    Nanoscale; 2020 May; 12(20):11251-11266. PubMed ID: 32412567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyzwitterionic micelles with antimicrobial-conjugation for eradication of drug-resistant bacterial biofilms.
    Qian Y; Hu X; Wang J; Li Y; Liu Y; Xie L
    Colloids Surf B Biointerfaces; 2023 Nov; 231():113542. PubMed ID: 37717312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence.
    Horev B; Klein MI; Hwang G; Li Y; Kim D; Koo H; Benoit DS
    ACS Nano; 2015 Mar; 9(3):2390-404. PubMed ID: 25661192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial activity.
    Barros CHN; Hiebner DW; Fulaz S; Vitale S; Quinn L; Casey E
    J Nanobiotechnology; 2021 Apr; 19(1):104. PubMed ID: 33849570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of D-Tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa.
    She P; Chen L; Liu H; Zou Y; Luo Z; Koronfel A; Wu Y
    Microb Pathog; 2015 Sep; 86():38-44. PubMed ID: 26188263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-vitro evaluation of a ciprofloxacin and azithromycin sinus stent for Pseudomonas aeruginosa biofilms.
    Lim DJ; Skinner D; Mclemore J; Rivers N; Elder JB; Allen M; Koch C; West J; Zhang S; Thompson HM; McCormick JP; Grayson JW; Cho DY; Woodworth BA
    Int Forum Allergy Rhinol; 2020 Jan; 10(1):121-127. PubMed ID: 31692289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triclosan loaded polyurethane micelles with pH and lipase sensitive properties for antibacterial applications and treatment of biofilms.
    Su Y; Zhao L; Meng F; Qiao Z; Yao Y; Luo J
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():921-930. PubMed ID: 30274129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.