These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 30608101)
1. Bacterial biofilm destruction by size/surface charge-adaptive micelles. Chen M; Wei J; Xie S; Tao X; Zhang Z; Ran P; Li X Nanoscale; 2019 Jan; 11(3):1410-1422. PubMed ID: 30608101 [TBL] [Abstract][Full Text] [Related]
2. On-demand pH-sensitive surface charge-switchable polymeric micelles for targeting Pseudomonas aeruginosa biofilms development. Chen X; Guo R; Wang C; Li K; Jiang X; He H; Hong W J Nanobiotechnology; 2021 Apr; 19(1):99. PubMed ID: 33836750 [TBL] [Abstract][Full Text] [Related]
3. Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms. Liu Y; Busscher HJ; Zhao B; Li Y; Zhang Z; van der Mei HC; Ren Y; Shi L ACS Nano; 2016 Apr; 10(4):4779-89. PubMed ID: 26998731 [TBL] [Abstract][Full Text] [Related]
4. Elaboration on the architecture of pH-sensitive surface charge-adaptive micelles with enhanced penetration and bactericidal activity in biofilms. Guo R; Li K; Tian B; Wang C; Chen X; Jiang X; He H; Hong W J Nanobiotechnology; 2021 Aug; 19(1):232. PubMed ID: 34362397 [TBL] [Abstract][Full Text] [Related]
5. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Liu Y; Ren Y; Li Y; Su L; Zhang Y; Huang F; Liu J; Liu J; van Kooten TG; An Y; Shi L; van der Mei HC; Busscher HJ Acta Biomater; 2018 Oct; 79():331-343. PubMed ID: 30172935 [TBL] [Abstract][Full Text] [Related]
6. Antibiofilm Platform based on the Combination of Antimicrobial Polymers and Essential Oils. Namivandi-Zangeneh R; Yang Y; Xu S; Wong EHH; Boyer C Biomacromolecules; 2020 Jan; 21(1):262-272. PubMed ID: 31657209 [TBL] [Abstract][Full Text] [Related]
7. pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms. Zhao Z; Ding C; Wang Y; Tan H; Li J Biomater Sci; 2019 Mar; 7(4):1643-1651. PubMed ID: 30723851 [TBL] [Abstract][Full Text] [Related]
8. Step-by-step dual stimuli-responsive nanoparticles for efficient bacterial biofilm eradication. Fan Q; Wang C; Guo R; Jiang X; Li W; Chen X; Li K; Hong W Biomater Sci; 2021 Oct; 9(20):6889-6902. PubMed ID: 34519743 [TBL] [Abstract][Full Text] [Related]
9. Inhalable mucin-permeable nanomicelles deliver antibiotics for effective treatment of chronic pneumonia. Jiang Z; Huo S; Qiao L; Lin P; Fu L; Wu Y; Li W; Bian C; Li Y; Li N; Cheng H; Nie X; Ding S J Mater Chem B; 2024 Aug; 12(34):8465-8476. PubMed ID: 39109448 [No Abstract] [Full Text] [Related]
10. Antibacterial Micelles with Vancomycin-Mediated Targeting and pH/Lipase-Triggered Release of Antibiotics. Chen M; Xie S; Wei J; Song X; Ding Z; Li X ACS Appl Mater Interfaces; 2018 Oct; 10(43):36814-36823. PubMed ID: 30298721 [TBL] [Abstract][Full Text] [Related]
11. Destruction of Paunova-Krasteva T; Haladjova E; Petrov P; Forys A; Trzebicka B; Topouzova-Hristova T; R Stoitsova S Biofouling; 2020 Jul; 36(6):679-695. PubMed ID: 32741293 [No Abstract] [Full Text] [Related]
12. On-Demand Multifunctional Electrostatic Complexation for Synergistic Eradication of MRSA Biofilms. Jiang X; Li W; Chen X; Wang C; Guo R; Hong W ACS Appl Mater Interfaces; 2022 Mar; 14(8):10200-10211. PubMed ID: 35179370 [TBL] [Abstract][Full Text] [Related]
13. Terpyridine-Micelles for Inhibiting Bacterial Biofilm Development. Qiao J; Purro M; Liu Z; Xiong MP ACS Infect Dis; 2018 Sep; 4(9):1346-1354. PubMed ID: 29974746 [TBL] [Abstract][Full Text] [Related]
14. Lipase and pH-responsive diblock copolymers featuring fluorocarbon and carboxyl betaine for methicillin-resistant staphylococcus aureus infections. Xiao J; Yin M; Yang M; Ren J; Liu C; Lian J; Lu X; Jiang Y; Yao Y; Luo J J Control Release; 2024 May; 369():39-52. PubMed ID: 38508523 [TBL] [Abstract][Full Text] [Related]
15. Development of polycationic micelles as an efficient delivery system of antibiotics for overcoming the biological barriers to reverse multidrug resistance in Escherichia coli. Guo R; Li K; Qin J; Niu S; Hong W Nanoscale; 2020 May; 12(20):11251-11266. PubMed ID: 32412567 [TBL] [Abstract][Full Text] [Related]
16. Polyzwitterionic micelles with antimicrobial-conjugation for eradication of drug-resistant bacterial biofilms. Qian Y; Hu X; Wang J; Li Y; Liu Y; Xie L Colloids Surf B Biointerfaces; 2023 Nov; 231():113542. PubMed ID: 37717312 [TBL] [Abstract][Full Text] [Related]
17. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. Horev B; Klein MI; Hwang G; Li Y; Kim D; Koo H; Benoit DS ACS Nano; 2015 Mar; 9(3):2390-404. PubMed ID: 25661192 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial activity. Barros CHN; Hiebner DW; Fulaz S; Vitale S; Quinn L; Casey E J Nanobiotechnology; 2021 Apr; 19(1):104. PubMed ID: 33849570 [TBL] [Abstract][Full Text] [Related]
19. The effects of D-Tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa. She P; Chen L; Liu H; Zou Y; Luo Z; Koronfel A; Wu Y Microb Pathog; 2015 Sep; 86():38-44. PubMed ID: 26188263 [TBL] [Abstract][Full Text] [Related]
20. In-vitro evaluation of a ciprofloxacin and azithromycin sinus stent for Pseudomonas aeruginosa biofilms. Lim DJ; Skinner D; Mclemore J; Rivers N; Elder JB; Allen M; Koch C; West J; Zhang S; Thompson HM; McCormick JP; Grayson JW; Cho DY; Woodworth BA Int Forum Allergy Rhinol; 2020 Jan; 10(1):121-127. PubMed ID: 31692289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]