These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30608502)

  • 1. Antireflective structures on highly flexible and large area elastomer membrane for tunable liquid-filled endoscopic lens.
    Bae SI; Lee Y; Seo YH; Jeong KH
    Nanoscale; 2019 Jan; 11(3):856-861. PubMed ID: 30608502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Durable Broadband and Omnidirectional Ultra-antireflective Surfaces.
    Li Z; Lin J; Liu Z; Feng S; Liu Y; Wang C; Liu Y; Yang S
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40180-40188. PubMed ID: 30378430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antireflective glass nanoholes on optical lenses.
    Lee Y; Bae SI; Eom J; Suh HC; Jeong KH
    Opt Express; 2018 May; 26(11):14786-14791. PubMed ID: 29877414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antireflective "moth-eye" structures on tunable optical silicone membranes.
    Brunner R; Keil B; Morhard C; Lehr D; Draheim J; Wallrabe U; Spatz J
    Appl Opt; 2012 Jul; 51(19):4370-6. PubMed ID: 22772109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.
    Ji S; Park J; Lim H
    Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband and crack-free antireflection coatings by self-assembled moth eye patterns.
    Galeotti F; Trespidi F; Timò G; Pasini M
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5827-34. PubMed ID: 24670669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broader-Band and Flexible Antireflective Films with the Window-like Structures Inspired by the Backside of Butterfly Wing Scales.
    Ding H; Liu D; Li B; Ze W; Niu S; Xu C; Han Z; Ren L
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19450-19459. PubMed ID: 33871958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible embroidered ball-like antireflective structure arrays inspired by leafhopper wings.
    Li PC; Chen HY; Chiang KT; Yang H
    J Colloid Interface Sci; 2021 Oct; 599():119-129. PubMed ID: 33933786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double-Sided, Omnidirectional γ-AlOOH Hierarchical Nanostructures: Imparting Enhanced Antireflective Properties with Self-Cleaning Capacity for Optical Devices.
    Halan Joghee S; Uthandi KM; Singh N; Katti S; Kumar P; Kaur MP; Pullithadathil B
    Langmuir; 2021 Jun; 37(23):6953-6966. PubMed ID: 34060322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer-coated moth-eye hybrid structure for broadband antireflection in the terahertz region.
    Yu X; Goto K; Yasunaga Y; Soeda J; Ono S
    Opt Lett; 2021 Aug; 46(15):3761-3764. PubMed ID: 34329275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission enhanced optical lenses with self-organized antireflective subwavelength structures for the UV range.
    Schulze M; Lehr D; Helgert M; Kley EB; Tünnermann A
    Opt Lett; 2011 Oct; 36(19):3924-6. PubMed ID: 21964143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Antireflection Properties with Self-Assembled Nanopillar and Nanohole Structure.
    Sun T; Shui F; Ning T; Guo W; Zhou Z; Chen Z; Qian C; Li Q
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink.
    Yeo CI; Song YM; Jang SJ; Lee YT
    Opt Express; 2011 Sep; 19 Suppl 5():A1109-16. PubMed ID: 21935253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized antireflective silicon nanostructure arrays using nanosphere lithography.
    Lee D; Bae J; Hong S; Yang H; Kim YB
    Nanotechnology; 2016 May; 27(21):215302. PubMed ID: 27087196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leafhopper-inspired reversibly switchable antireflection coating with sugar apple-like structure arrays.
    Chiang KT; Lin SH; Ye YZ; Zeng BH; Cheng YL; Lee RH; Lin KA; Yang H
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):81-93. PubMed ID: 37393770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband and wide-angle antireflective subwavelength microstructures on zinc sulfide fabricated by femtosecond laser parallel multi-beam.
    Zhang F; Duan J; Zhou X; Wang C
    Opt Express; 2018 Dec; 26(26):34016-34030. PubMed ID: 30650832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices.
    Perl EE; McMahon WE; Bowers JE; Friedman DJ
    Opt Express; 2014 Aug; 22 Suppl 5():A1243-56. PubMed ID: 25322179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband antireflective nano-cones for tandem solar cells.
    Buencuerpo J; Llorens JM; Dotor ML; Ripalda JM
    Opt Express; 2015 Apr; 23(7):A322-36. PubMed ID: 25968798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Luminescent antireflective coatings with disordered surface nanostructures fabricated by liquid processes.
    Tanaka S; Fujihara S
    Langmuir; 2011 Mar; 27(6):2929-35. PubMed ID: 21338102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical phenomena and antifrosting property on biomimetics slippery fluid-infused antireflective films via layer-by-layer comparison with superhydrophobic and antireflective films.
    Manabe K; Nishizawa S; Kyung KH; Shiratori S
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13985-93. PubMed ID: 25093243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.