These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 30608712)

  • 1. Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/TiO
    Lee H; Lee H; Park JY
    Nano Lett; 2019 Feb; 19(2):891-896. PubMed ID: 30608712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elongated Lifetime and Enhanced Flux of Hot Electrons on a Perovskite Plasmonic Nanodiode.
    Park Y; Choi J; Lee C; Cho AN; Cho DW; Park NG; Ihee H; Park JY
    Nano Lett; 2019 Aug; 19(8):5489-5495. PubMed ID: 31348860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Visualization of Localized Surface Plasmon Resonance-Driven Hot Hole Flux.
    Lee H; Song K; Lee M; Park JY
    Adv Sci (Weinh); 2020 Oct; 7(20):2001148. PubMed ID: 33101854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic hot carrier-driven oxygen evolution reaction on Au nanoparticles/TiO
    Moon SY; Song HC; Gwag EH; Nedrygailov II; Lee C; Kim JJ; Doh WH; Park JY
    Nanoscale; 2018 Dec; 10(47):22180-22188. PubMed ID: 30484456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hot electrons generated by intraband and interband transition detected using a plasmonic Cu/TiO
    Lee C; Park Y; Park JY
    RSC Adv; 2019 Jun; 9(32):18371-18376. PubMed ID: 35515219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting.
    Vahidzadeh E; Zeng S; Alam KM; Kumar P; Riddell S; Chaulagain N; Gusarov S; Kobryn AE; Shankar K
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42741-42752. PubMed ID: 34476945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplification of hot electron flow by the surface plasmon effect on metal-insulator-metal nanodiodes.
    Lee C; Nedrygailov II; Lee YK; Ahn C; Lee H; Jeon S; Park JY
    Nanotechnology; 2015 Nov; 26(44):445201. PubMed ID: 26451470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic Control of Hot Electron Transport Using Modified Schottky Barriers in Metal-Semiconductor Nanodiodes.
    Jeon B; Lee C; Park JY
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9252-9259. PubMed ID: 33587596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoarchitectonics of a Au nanoprism array on WO
    Chen X; Li P; Tong H; Kako T; Ye J
    Sci Technol Adv Mater; 2011 Aug; 12(4):044604. PubMed ID: 27877412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Observation of Single Au Triangular Nanoprism Etching to Various Shapes for Plasmonic Photocatalytic Hydrogen Generation.
    Lou Z; Kim S; Zhang P; Shi X; Fujitsuka M; Majima T
    ACS Nano; 2017 Jan; 11(1):968-974. PubMed ID: 28005321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulation of hot electron flow on plasmonic nanodiodes fabricated by nanosphere lithography.
    Kang M; Park Y; Lee H; Lee C; Park JY
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33607643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic Boosting by Surface-Plasmon-Driven Hot Electrons on Antenna-Reactor Schottky Nanodiodes.
    Kang M; Jeon B; Park JY
    Nano Lett; 2023 Jun; 23(11):5116-5122. PubMed ID: 37265068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional Au-Nanoprism/Reduced Graphene Oxide/Pt-Nanoframe as Plasmonic Photocatalysts with Multiplasmon Modes Boosting Hot Electron Transfer for Hydrogen Generation.
    Lou Z; Fujitsuka M; Majima T
    J Phys Chem Lett; 2017 Feb; 8(4):844-849. PubMed ID: 28157318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO₂ Nanostructures.
    Fang Y; Jiao Y; Xiong K; Ogier R; Yang ZJ; Gao S; Dahlin AB; Käll M
    Nano Lett; 2015 Jun; 15(6):4059-65. PubMed ID: 25938263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of Hot Electron Flow in Plasmonic Nanodiodes by Incorporating PbS Quantum Dots.
    Lee C; Choi H; Nedrygailov II; Lee YK; Jeong S; Park JY
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5081-5089. PubMed ID: 29308649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional hot electron photovoltaic device with vertically aligned TiO
    Goddeti KC; Lee C; Lee YK; Park JY
    Sci Rep; 2018 May; 8(1):7330. PubMed ID: 29743488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photomodulated Spatially Confined Chemical Reactivity in a Single Silver Nanoprism.
    Bhanushali S; Mahasivam S; Ramanathan R; Singh M; Harrop Mayes EL; Murdoch BJ; Bansal V; Sastry M
    ACS Nano; 2020 Sep; 14(9):11100-11109. PubMed ID: 32790283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot Hole Collection and Photoelectrochemical CO
    DuChene JS; Tagliabue G; Welch AJ; Cheng WH; Atwater HA
    Nano Lett; 2018 Apr; 18(4):2545-2550. PubMed ID: 29522350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.