These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30608810)

  • 1. Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical Traps.
    Jawerth LM; Ijavi M; Ruer M; Saha S; Jahnel M; Hyman AA; Jülicher F; Fischer-Friedrich E
    Phys Rev Lett; 2018 Dec; 121(25):258101. PubMed ID: 30608810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelasticity of biomolecular condensates conforms to the Jeffreys model.
    Zhou HX
    J Chem Phys; 2021 Jan; 154(4):041103. PubMed ID: 33514117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics.
    Elbaum-Garfinkle S; Kim Y; Szczepaniak K; Chen CC; Eckmann CR; Myong S; Brangwynne CP
    Proc Natl Acad Sci U S A; 2015 Jun; 112(23):7189-94. PubMed ID: 26015579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-based condensation mechanisms drive the assembly of RNA-rich P granules.
    Schmidt H; Putnam A; Rasoloson D; Seydoux G
    Elife; 2021 Jun; 10():. PubMed ID: 34106046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation and Assembly of a Light-Emitting Enzymatic Reaction into Model Protein Condensates.
    Guan M; Garabedian MV; Leutenegger M; Schuster BS; Good MC; Hammer DA
    Biochemistry; 2021 Oct; 60(42):3137-3151. PubMed ID: 34648259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active microrheology of protein condensates using colloidal probe-AFM.
    Li X; van der Gucht J; Erni P; de Vries R
    J Colloid Interface Sci; 2023 Feb; 632(Pt B):357-366. PubMed ID: 36436394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of biomolecular condensates by interfacial protein clusters.
    Folkmann AW; Putnam A; Lee CF; Seydoux G
    Science; 2021 Sep; 373(6560):1218-1224. PubMed ID: 34516789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The P Granules of C. elegans: A Genetic Model for the Study of RNA-Protein Condensates.
    Seydoux G
    J Mol Biol; 2018 Nov; 430(23):4702-4710. PubMed ID: 30096346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining Thermodynamic and Material Properties of Biomolecular Condensates by Confocal Microscopy and Optical Tweezers.
    Ghosh A; Kota D; Zhou HX
    Methods Mol Biol; 2023; 2563():237-260. PubMed ID: 36227477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides.
    Alshareedah I; Moosa MM; Pham M; Potoyan DA; Banerjee PR
    Nat Commun; 2021 Nov; 12(1):6620. PubMed ID: 34785657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A calibration-free model of micropipette aspiration for measuring properties of protein condensates.
    Roggeveen JV; Wang H; Shi Z; Stone HA
    Biophys J; 2024 Jun; 123(11):1393-1403. PubMed ID: 37789618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membraneless organelles: P granules in Caenorhabditis elegans.
    Marnik EA; Updike DL
    Traffic; 2019 Jun; 20(6):373-379. PubMed ID: 30924287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods and Strategies to Quantify Phase Separation of Disordered Proteins.
    Ceballos AV; McDonald CJ; Elbaum-Garfinkle S
    Methods Enzymol; 2018; 611():31-50. PubMed ID: 30471691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erratum: Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical Traps [Phys. Rev. Lett. 121, 258101 (2018)].
    Jawerth LM; Ijavi M; Ruer M; Saha S; Jahnel M; Hyman AA; Jülicher F; Fischer-Friedrich E
    Phys Rev Lett; 2020 Nov; 125(22):229901. PubMed ID: 33315465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching.
    Taylor NO; Wei MT; Stone HA; Brangwynne CP
    Biophys J; 2019 Oct; 117(7):1285-1300. PubMed ID: 31540706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape recovery of deformed biomolecular droplets: Dependence on condensate viscoelasticity.
    Zhou HX
    J Chem Phys; 2021 Oct; 155(14):145102. PubMed ID: 34654286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical tweezers based active microrheology of sodium polystyrene sulfonate (NaPSS).
    Chiang CC; Wei MT; Chen YQ; Yen PW; Huang YC; Chen JY; Lavastre O; Guillaume H; Guillaume D; Chiou A
    Opt Express; 2011 Apr; 19(9):8847-54. PubMed ID: 21643138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 'RNA modulation of transport properties and stability in phase-separated condensates.
    Tejedor AR; Garaizar A; Ramírez J; Espinosa JR
    Biophys J; 2021 Dec; 120(23):5169-5186. PubMed ID: 34762868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular viscoelasticity probed by active rheology in optical tweezers.
    Lyubin EV; Khokhlova MD; Skryabina MN; Fedyanin AA
    J Biomed Opt; 2012 Oct; 17(10):101510. PubMed ID: 23223986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear relaxation governs fusion dynamics of biomolecular condensates.
    Ghosh A; Kota D; Zhou HX
    Nat Commun; 2021 Oct; 12(1):5995. PubMed ID: 34645832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.