These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 30609261)

  • 1. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way.
    Wei T; Yu Q; Chen H
    Adv Healthc Mater; 2019 Feb; 8(3):e1801381. PubMed ID: 30609261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities.
    Wei T; Tang Z; Yu Q; Chen H
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37511-37523. PubMed ID: 28992417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-defensive antibiotic-loaded layer-by-layer coatings: Imaging of localized bacterial acidification and pH-triggering of antibiotic release.
    Albright V; Zhuk I; Wang Y; Selin V; van de Belt-Gritter B; Busscher HJ; van der Mei HC; Sukhishvili SA
    Acta Biomater; 2017 Oct; 61():66-74. PubMed ID: 28803214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifogging/Antibacterial Coatings Constructed by
    Bai S; Li X; Zhao Y; Ren L; Yuan X
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12305-12316. PubMed ID: 32068389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Antibacterial Coatings.
    Musil J
    Molecules; 2017 May; 22(5):. PubMed ID: 28509861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation.
    Lv H; Chen Z; Yang X; Cen L; Zhang X; Gao P
    J Dent; 2014 Nov; 42(11):1464-72. PubMed ID: 24930872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters.
    Francesko A; Fernandes MM; Ivanova K; Amorim S; Reis RL; Pashkuleva I; Mendoza E; Pfeifer A; Heinze T; Tzanov T
    Acta Biomater; 2016 Mar; 33():203-12. PubMed ID: 26804206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic antibacterial effect and mechanism between Cu
    Xiao H; Zhou S
    Colloids Surf B Biointerfaces; 2024 Jun; 238():113914. PubMed ID: 38663310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications.
    Nie C; Yang Y; Cheng C; Ma L; Deng J; Wang L; Zhao C
    Acta Biomater; 2017 Mar; 51():479-494. PubMed ID: 28082114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responsive and "smart" antibacterial surfaces: common approaches and new developments (Review).
    Cavallaro A; Taheri S; Vasilev K
    Biointerphases; 2014 Jun; 9(2):029005. PubMed ID: 24985209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part II: Active, Combined Active and Passive, and Smart Bacteria-Responsive Antibiofilm Nanocoatings.
    Balaure PC; Grumezescu AM
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32759748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of salt-responsive and regenerative antibacterial polymer brushes with integrated bacterial resistance, killing, and release properties.
    Wang Y; Wu J; Zhang D; Chen F; Fan P; Zhong M; Xiao S; Chang Y; Gong X; Yang J; Zheng J
    J Mater Chem B; 2019 Oct; 7(38):5762-5774. PubMed ID: 31465075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optically Responsive, Smart Anti-Bacterial Coatings via the Photofluidization of Azobenzenes.
    Kehe GM; Mori DI; Schurr MJ; Nair DP
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1760-1765. PubMed ID: 30605328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-function antibacterial surfaces for biomedical applications.
    Yu Q; Wu Z; Chen H
    Acta Biomater; 2015 Apr; 16():1-13. PubMed ID: 25637065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibiofilm Nitric Oxide-Releasing Polydopamine Coatings.
    Sadrearhami Z; Shafiee FN; Ho KKK; Kumar N; Krasowska M; Blencowe A; Wong EHH; Boyer C
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7320-7329. PubMed ID: 30688429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layer-by-Layer Assembled Smart Antibacterial Coatings via Mussel-Inspired Polymerization and Dynamic Covalent Chemistry.
    Yang L; Li L; Li H; Wang T; Ren X; Cheng Y; Li Y; Huang Q
    Adv Healthc Mater; 2022 Jun; 11(12):e2200112. PubMed ID: 35182462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The future development of bacteria fighting medical devices: the role of graphene oxide.
    Palmieri V; Papi M; Conti C; Ciasca G; Maulucci G; De Spirito M
    Expert Rev Med Devices; 2016 Nov; 13(11):1013-1019. PubMed ID: 27710143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections.
    Li X; Wu B; Chen H; Nan K; Jin Y; Sun L; Wang B
    J Mater Chem B; 2018 Jul; 6(26):4274-4292. PubMed ID: 32254504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium.
    Croes M; Bakhshandeh S; van Hengel IAJ; Lietaert K; van Kessel KPM; Pouran B; van der Wal BCH; Vogely HC; Van Hecke W; Fluit AC; Boel CHE; Alblas J; Zadpoor AA; Weinans H; Amin Yavari S
    Acta Biomater; 2018 Nov; 81():315-327. PubMed ID: 30268917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional antibacterial chitosan-based hydrogel coatings on Ti6Al4V biomaterial for biomedical implant applications.
    Andrade Del Olmo J; Pérez-Álvarez L; Sáez Martínez V; Benito Cid S; Ruiz-Rubio L; Pérez González R; Vilas-Vilela JL; Alonso JM
    Int J Biol Macromol; 2023 Mar; 231():123328. PubMed ID: 36681215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.