BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 30609389)

  • 1. SubCellBarCode: Proteome-wide Mapping of Protein Localization and Relocalization.
    Orre LM; Vesterlund M; Pan Y; Arslan T; Zhu Y; Fernandez Woodbridge A; Frings O; Fredlund E; Lehtiö J
    Mol Cell; 2019 Jan; 73(1):166-182.e7. PubMed ID: 30609389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SubCellBarCode: integrated workflow for robust spatial proteomics by mass spectrometry.
    Arslan T; Pan Y; Mermelekas G; Vesterlund M; Orre LM; Lehtiö J
    Nat Protoc; 2022 Aug; 17(8):1832-1867. PubMed ID: 35732783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organellar Maps Through Proteomic Profiling - A Conceptual Guide.
    Borner GHH
    Mol Cell Proteomics; 2020 Jul; 19(7):1076-1087. PubMed ID: 32345598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics methods for subcellular proteome analysis.
    Drissi R; Dubois ML; Boisvert FM
    FEBS J; 2013 Nov; 280(22):5626-34. PubMed ID: 24034475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling Cell Lines Nuclear Sub-proteome.
    Poersch A; Maria AG; Palma CS; Grassi ML; Albuquerque D; Thomé CH; Faça VM
    Methods Mol Biol; 2017; 1550():35-46. PubMed ID: 28188521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DEqMS: A Method for Accurate Variance Estimation in Differential Protein Expression Analysis.
    Zhu Y; Orre LM; Zhou Tran Y; Mermelekas G; Johansson HJ; Malyutina A; Anders S; Lehtiö J
    Mol Cell Proteomics; 2020 Jun; 19(6):1047-1057. PubMed ID: 32205417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of functional interaction networks through consensus localization predictions of the human proteome.
    Park S; Yang JS; Jang SK; Kim S
    J Proteome Res; 2009 Jul; 8(7):3367-76. PubMed ID: 19415893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons.
    Itzhak DN; Davies C; Tyanova S; Mishra A; Williamson J; Antrobus R; Cox J; Weekes MP; Borner GHH
    Cell Rep; 2017 Sep; 20(11):2706-2718. PubMed ID: 28903049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular fractionation for identification of biomarkers: serial detergent extraction by subcellular accessibility and solubility.
    Hwang SI; Han DK
    Methods Mol Biol; 2013; 1002():25-35. PubMed ID: 23625392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass Spectrometry Analysis of Spatial Protein Networks by Colocalization Analysis (COLA).
    Mardakheh FK
    Methods Mol Biol; 2017; 1636():337-352. PubMed ID: 28730490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Organellar Maps for Spatial Proteomics.
    Itzhak DN; Schessner JP; Borner GHH
    Curr Protoc Cell Biol; 2019 Jun; 83(1):e81. PubMed ID: 30489039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Proteomic Analysis of the Human Nucleolus.
    Bensaddek D; Nicolas A; Lamond AI
    Methods Mol Biol; 2016; 1455():249-62. PubMed ID: 27576725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage.
    Boisvert FM; Lam YW; Lamont D; Lamond AI
    Mol Cell Proteomics; 2010 Mar; 9(3):457-70. PubMed ID: 20026476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PSL-LCCL: a resource for subcellular protein localization in liver cancer cell line SK_HEP1.
    Huang F; Tang X; Ye B; Wu S; Ding K
    Database (Oxford); 2022 Feb; 2022():. PubMed ID: 35134877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome analysis at the level of subcellular structures.
    Dreger M
    Eur J Biochem; 2003 Feb; 270(4):589-99. PubMed ID: 12581199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining the acidic serum proteome utilizing off-gel isoelectric focusing and label free quantitative liquid chromatography mass spectrometry.
    Smith J; Davey G; Polom K; Roviello F; Bones J
    J Chromatogr A; 2018 Sep; 1566():32-43. PubMed ID: 29945787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of proteomic marker ensembles to subcellular organelle identification.
    Andreyev AY; Shen Z; Guan Z; Ryan A; Fahy E; Subramaniam S; Raetz CR; Briggs S; Dennis EA
    Mol Cell Proteomics; 2010 Feb; 9(2):388-402. PubMed ID: 19884172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics profiling of interactome dynamics by colocalisation analysis (COLA).
    Mardakheh FK; Sailem HZ; Kümper S; Tape CJ; McCully RR; Paul A; Anjomani-Virmouni S; Jørgensen C; Poulogiannis G; Marshall CJ; Bakal C
    Mol Biosyst; 2016 Dec; 13(1):92-105. PubMed ID: 27824369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria.
    Rey S; Gardy JL; Brinkman FS
    BMC Genomics; 2005 Nov; 6():162. PubMed ID: 16288665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the subcellular proteome of Shewanella oneidensis MR-1 using sarkosyl-based fractionation and LC-MS/MS protein identification.
    Brown RN; Romine MF; Schepmoes AA; Smith RD; Lipton MS
    J Proteome Res; 2010 Sep; 9(9):4454-63. PubMed ID: 20690604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.