These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 30609616)

  • 1. Development of magnetic solid phase microextraction method for determination of the endocrine disrupting chemicals leached from reused plastic bottles.
    Gorji S; Biparva P; Bahram M; Nematzadeh G
    Talanta; 2019 Mar; 194():859-869. PubMed ID: 30609616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a functionalized polymeric ionic liquid monolith for solid-phase microextraction of polar endocrine disrupting chemicals in aqueous samples coupled to high-performance liquid chromatography.
    Feng J; Sun M; Bu Y; Luo C
    Anal Bioanal Chem; 2015 Sep; 407(23):7025-35. PubMed ID: 26220716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of bisphenols with estrogenic activity in plastic packaged baby food samples using solid-liquid extraction and clean-up with dispersive sorbents followed by gas chromatography tandem mass spectrometry analysis.
    García-Córcoles MT; Cipa M; Rodríguez-Gómez R; Rivas A; Olea-Serrano F; Vílchez JL; Zafra-Gómez A
    Talanta; 2018 Feb; 178():441-448. PubMed ID: 29136846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microextraction with polyethersulfone for bisphenol-A, alkylphenols and hormones determination in water samples by means of gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry analysis.
    Ros O; Vallejo A; Blanco-Zubiaguirre L; Olivares M; Delgado A; Etxebarria N; Prieto A
    Talanta; 2015 Mar; 134():247-255. PubMed ID: 25618664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced microextraction of endocrine disrupting chemicals adsorbed on airborne fine particulate matter with gas chromatography-tandem mass spectrometric analysis.
    Naing NN; Goh EXY; Lee HK
    J Chromatogr A; 2021 Jan; 1637():461828. PubMed ID: 33373795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polypyrrole-coated alginate/magnetite nanoparticles composite sorbent for the extraction of endocrine-disrupting compounds.
    Bunkoed O; Nurerk P; Wannapob R; Kanatharana P
    J Sep Sci; 2016 Sep; 39(18):3602-9. PubMed ID: 27449825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of phthalates in bottled water by automated on-line solid phase extraction coupled to liquid chromatography with uv detection.
    Salazar-Beltrán D; Hinojosa-Reyes L; Ruiz-Ruiz E; Hernández-Ramírez A; Luis Guzmán-Mar J
    Talanta; 2017 Jun; 168():291-297. PubMed ID: 28391856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly sensitive determination of endocrine disrupting chemicals in foodstuffs through magnetic solid-phase extraction followed by high-performance liquid chromatography-tandem mass spectrometry.
    Liu J; Wu D; Yu Y; Liu J; Li G; Wu Y
    J Sci Food Agric; 2021 Mar; 101(4):1666-1675. PubMed ID: 32888325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online analysis of five organic ultraviolet filters in environmental water samples using magnetism-enhanced monolith-based in-tube solid phase microextraction coupled with high-performance liquid chromatography.
    Mei M; Huang X
    J Chromatogr A; 2017 Nov; 1525():1-9. PubMed ID: 29055526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of endocrine disrupting chemicals and antiretroviral compounds in surface water: A disposable sorptive sampler with comprehensive gas chromatography - Time-of-flight mass spectrometry and large volume injection with ultra-high performance liquid chromatography-tandem mass spectrometry.
    Wooding M; Rohwer ER; Naudé Y
    J Chromatogr A; 2017 May; 1496():122-132. PubMed ID: 28365075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid/liquid phase microextraction of five bisphenol-type endocrine disrupting chemicals by using a hollow fiber reinforced with graphene oxide nanoribbons, and determination by HPLC-PDA.
    Han X; Chen J; Qiu H; Shi YP
    Mikrochim Acta; 2019 May; 186(6):375. PubMed ID: 31127364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the application of stir bar sorptive-dispersive microextraction approach to solid matrices: Determination of ultraviolet filters in coastal sand samples.
    Benedé JL; Chisvert A; Moyano C; Giokas DL; Salvador A
    J Chromatogr A; 2018 Aug; 1564():25-33. PubMed ID: 29887335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of stir bar sorptive-dispersive microextraction mediated by magnetic nanoparticles and its analytical application to the determination of hydrophobic organic compounds in aqueous media.
    Benedé JL; Chisvert A; Giokas DL; Salvador A
    J Chromatogr A; 2014 Oct; 1362():25-33. PubMed ID: 25173996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermally stable ionic liquid-based sol-gel coating for ultrasonic extraction-solid-phase microextraction-gas chromatography determination of phthalate esters in agricultural plastic films.
    Zhou X; Shao X; Shu JJ; Liu MM; Liu HL; Feng XH; Liu F
    Talanta; 2012 Jan; 89():129-35. PubMed ID: 22284470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of electro-enhanced solid-phase microextraction for determination of phthalate esters and bisphenol A in blood and seawater samples.
    Mousa A; Basheer C; Al-Arfaj AR
    Talanta; 2013 Oct; 115():308-13. PubMed ID: 24054596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of a benzyl functionalized polymeric ionic liquid for the sensitive determination of polycyclic aromatic hydrocarbons; parabens and alkylphenols in waters using solid-phase microextraction coupled to gas chromatography-flame ionization detection.
    López-Darias J; Pino V; Meng Y; Anderson JL; Afonso AM
    J Chromatogr A; 2010 Nov; 1217(46):7189-97. PubMed ID: 20933234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of inorganic oxide nanoparticles on extraction efficiency of electrospun polyethylene terephthalate nanocomposite as an unbreakable fiber coating.
    Bagheri H; Roostaie A
    J Chromatogr A; 2015 Jan; 1375():8-16. PubMed ID: 25497581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A green air assisted-dispersive liquid-liquid microextraction based on solidification of a novel low viscous ternary deep eutectic solvent for the enrichment of endocrine disrupting compounds from water.
    El-Deen AK; Shimizu K
    J Chromatogr A; 2020 Oct; 1629():461498. PubMed ID: 32846342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimisation of stir bar sorptive extraction and in-tube derivatisation-thermal desorption-gas chromatography-mass spectrometry for the determination of several endocrine disruptor compounds in environmental water samples.
    Iparraguirre A; Prieto A; Navarro P; Olivares M; Fernández LÁ; Zuloaga O
    Anal Bioanal Chem; 2011 Jul; 401(1):339-52. PubMed ID: 21598080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zero valent Fe-reduced graphene oxide quantum dots as a novel magnetic dispersive solid phase microextraction sorbent for extraction of organophosphorus pesticides in real water and fruit juice samples prior to analysis by gas chromatography-mass spectrometry.
    Akbarzade S; Chamsaz M; Rounaghi GH; Ghorbani M
    Anal Bioanal Chem; 2018 Jan; 410(2):429-439. PubMed ID: 29214538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.