These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30609618)

  • 1. Preparation of TiO
    Zhu B; Zhou Q; Zhen D; Wang Y; Cai Q; Chen P
    Talanta; 2019 Mar; 194():870-875. PubMed ID: 30609618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Bi
    Zhen D; Gao C; Zhu B; Zhou Q; Li C; Chen P; Cai Q
    Anal Chem; 2018 Nov; 90(21):12414-12421. PubMed ID: 30303010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly selective enrichment of phosphopeptides using Zr
    Dai J; Wang M; Liu H
    Talanta; 2017 Mar; 164():222-227. PubMed ID: 28107921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile fabrication of hydrophilic PAA-Ti/TiO
    Wei XN; Wang HL
    Anal Chim Acta; 2017 Jan; 949():67-75. PubMed ID: 27876147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amine-functionalized TiO₂ nanoparticles for highly selective enrichment of phosphopeptides.
    Liu H; Zhou J; Huang H
    Talanta; 2015 Oct; 143():431-437. PubMed ID: 26078180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel molybdenum disulfide nanosheet loaded Titanium/Zirconium bimetal oxide affinity probe for efficient enrichment of phosphopeptides in A549 cells.
    Ma ZQ; Wang YH; Peng Y; Guo X; Meng Z
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 May; 1199():123235. PubMed ID: 35447520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient enrichment of phosphopeptides by magnetic TiO₂-coated carbon-encapsulated iron nanoparticles.
    Zeng YY; Chen HJ; Shiau KJ; Hung SU; Wang YS; Wu CC
    Proteomics; 2012 Feb; 12(3):380-90. PubMed ID: 22144111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perovskite for the highly selective enrichment of phosphopeptides.
    Li XS; Chen X; Sun H; Yuan BF; Feng YQ
    J Chromatogr A; 2015 Jan; 1376():143-8. PubMed ID: 25542702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zirconium(IV)-IMAC Revisited: Improved Performance and Phosphoproteome Coverage by Magnetic Microparticles for Phosphopeptide Affinity Enrichment.
    Arribas Diez I; Govender I; Naicker P; Stoychev S; Jordaan J; Jensen ON
    J Proteome Res; 2021 Jan; 20(1):453-462. PubMed ID: 33226818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic cellulose-TiO2 nanocomposite microspheres for highly selective enrichment of phosphopeptides.
    Duan J; He X; Zhang L
    Chem Commun (Camb); 2015; 51(2):338-41. PubMed ID: 25407892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry.
    Cantin GT; Shock TR; Park SK; Madhani HD; Yates JR
    Anal Chem; 2007 Jun; 79(12):4666-73. PubMed ID: 17523591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ti
    He Y; Zheng Q; Lin Z
    Mikrochim Acta; 2021 Apr; 188(5):150. PubMed ID: 33813605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of phosphopeptides using zirconium-chlorophosphonazo chelate-modified silica nanoparticles.
    Zhao PX; Zhao Y; Guo XF; Wang H; Zhang HS
    J Chromatogr A; 2011 May; 1218(18):2528-39. PubMed ID: 21444088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of titanium dioxide and immunoaffinity-based enrichment procedures for tyrosine phosphopeptide using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Wang MC; Lee YH; Liao PC
    Anal Bioanal Chem; 2015 Feb; 407(5):1343-56. PubMed ID: 25486920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient enrichment of phosphopeptides by magnetic nanoparticles coated with zirconium phosphonate for phosphoproteome analysis.
    Wei J; Zhang Y; Wang J; Tan F; Liu J; Cai Y; Qian X
    Rapid Commun Mass Spectrom; 2008 Apr; 22(7):1069-80. PubMed ID: 18327884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new acid mix enhances phosphopeptide enrichment on titanium- and zirconium dioxide for mapping of phosphorylation sites on protein complexes.
    Mazanek M; Roitinger E; Hudecz O; Hutchins JR; Hegemann B; Mitulović G; Taus T; Stingl C; Peters JM; Mechtler K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Feb; 878(5-6):515-24. PubMed ID: 20075017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A capillary column packed with a zirconium(IV)-based organic framework for enrichment of endogenous phosphopeptides.
    Lin H; Chen H; Shao X; Deng C
    Mikrochim Acta; 2018 Nov; 185(12):562. PubMed ID: 30488348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient enrichment of phosphopeptides from HeLa cells using hollow magnetic macro/mesoporous TiO
    Hong Y; Zhan Q; Pu C; Sheng Q; Zhao H; Lan M
    Talanta; 2018 Sep; 187():223-230. PubMed ID: 29853039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic mesoporous silica nanocomposites with binary metal oxides core-shell structure for the selective enrichment of endogenous phosphopeptides from human saliva.
    Li Y; Liu L; Wu H; Deng C
    Anal Chim Acta; 2019 Nov; 1079():111-119. PubMed ID: 31387701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis.
    Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X
    J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.