BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 30609623)

  • 1. Design and preparation of centrifugal microfluidic chip integrated with SERS detection for rapid diagnostics.
    Su X; Xu Y; Zhao H; Li S; Chen L
    Talanta; 2019 Mar; 194():903-909. PubMed ID: 30609623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy.
    Zhao X; Xue J; Mu Z; Huang Y; Lu M; Gu Z
    Biosens Bioelectron; 2015 Oct; 72():268-74. PubMed ID: 25988995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip.
    Zheng Z; Wu L; Li L; Zong S; Wang Z; Cui Y
    Talanta; 2018 Oct; 188():507-515. PubMed ID: 30029406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing.
    Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X
    Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic device for concentration and SERS-based detection of bacteria in drinking water.
    Krafft B; Tycova A; Urban RD; Dusny C; Belder D
    Electrophoresis; 2021 Jan; 42(1-2):86-94. PubMed ID: 32391575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip.
    Wu L; Wang Z; Zong S; Cui Y
    Biosens Bioelectron; 2014 Dec; 62():13-8. PubMed ID: 24973537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.
    Wang C; Wu X; Dong P; Chen J; Xiao R
    Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic chip using Au@SiO
    Gu Y; Li Z; Ge S; Mao Y; Gu Y; Cao X; Lu D
    Anal Bioanal Chem; 2022 Nov; 414(26):7659-7673. PubMed ID: 36050486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of circulating tumor cells in blood by shell-isolated nanoparticle - enhanced Raman spectroscopy (SHINERS) in microfluidic device.
    Niciński K; Krajczewski J; Kudelski A; Witkowska E; Trzcińska-Danielewicz J; Girstun A; Kamińska A
    Sci Rep; 2019 Jun; 9(1):9267. PubMed ID: 31239487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A droplet-based microfluidic chip as a platform for leukemia cell lysate identification using surface-enhanced Raman scattering.
    Hassoun M; Rüger J; Kirchberger-Tolstik T; Schie IW; Henkel T; Weber K; Cialla-May D; Krafft C; Popp J
    Anal Bioanal Chem; 2018 Jan; 410(3):999-1006. PubMed ID: 28905087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection.
    Kline ND; Tripathi A; Mirsafavi R; Pardoe I; Moskovits M; Meinhart C; Guicheteau JA; Christesen SD; Fountain AW
    Anal Chem; 2016 Nov; 88(21):10513-10522. PubMed ID: 27715011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplification-free SERS analysis of DNA mutation in cancer cells with single-base sensitivity.
    Wu L; Garrido-Maestu A; Guerreiro JRL; Carvalho S; Abalde-Cela S; Prado M; Diéguez L
    Nanoscale; 2019 Apr; 11(16):7781-7789. PubMed ID: 30951061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720.
    Fan M; Wang P; Escobedo C; Sinton D; Brolo AG
    Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated EC-SERS Chip with Uniform Nanostructured EC-SERS Active Working Electrode for Rapid Detection of Uric Acid.
    Huang CY; Hsiao HC
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manual-slide-engaged paper chip for parallel SERS-immunoassay measurement of clenbuterol from swine hair.
    Zheng T; Gao Z; Luo Y; Liu X; Zhao W; Lin B
    Electrophoresis; 2016 Feb; 37(3):418-24. PubMed ID: 26395181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SERS-Based Immunoassay of Myocardial Infarction Biomarkers on a Microfluidic Chip with Plasmonic Nanostripe Microcones.
    Gao R; Mao Y; Ma C; Wang Y; Jia H; Chen X; Lu Y; Zhang D; Yu L
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55414-55422. PubMed ID: 36480247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules.
    Zhou J; Ren K; Zhao Y; Dai W; Wu H
    Anal Bioanal Chem; 2012 Feb; 402(4):1601-9. PubMed ID: 22127578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of a Superhydrophobic and Peroxidase-like Activity Array Chip for H2O2 Sensing by Surface-Enhanced Raman Scattering.
    Yu Z; Park Y; Chen L; Zhao B; Jung YM; Cong Q
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23472-80. PubMed ID: 26437325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aptamer-based surface-enhanced Raman scattering-microfluidic sensor for sensitive and selective polychlorinated biphenyls detection.
    Fu C; Wang Y; Chen G; Yang L; Xu S; Xu W
    Anal Chem; 2015 Oct; 87(19):9555-8. PubMed ID: 26339871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.
    Shu L; Zhou J; Yuan X; Petti L; Chen J; Jia Z; Mormile P
    Talanta; 2014 Jun; 123():161-8. PubMed ID: 24725879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.