These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30609901)

  • 21. Environmental impacts of dietary quality improvement in China.
    He P; Baiocchi G; Feng K; Hubacek K; Yu Y
    J Environ Manage; 2019 Jun; 240():518-526. PubMed ID: 30999146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data.
    Aleksandrowicz L; Green R; Joy EJM; Harris F; Hillier J; Vetter SH; Smith P; Kulkarni B; Dangour AD; Haines A
    Environ Int; 2019 May; 126():207-215. PubMed ID: 30802638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Traditional japanese diet score and the sustainable development goals by a global comparative ecological study.
    Imai T; Miyamoto K; Sezaki A; Kawase F; Shirai Y; Abe C; Sanada M; Inden A; Sugihara N; Honda T; Sumikama Y; Nosaka S; Shimokata H
    Nutr J; 2024 Mar; 23(1):38. PubMed ID: 38509554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in pig production in China and their effects on nitrogen and phosphorus use and losses.
    Bai ZH; Ma L; Qin W; Chen Q; Oenema O; Zhang FS
    Environ Sci Technol; 2014 Nov; 48(21):12742-9. PubMed ID: 25292109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorus flow analysis in the maize based food-feed-energy systems in China.
    Wang Z; Hartmann TE; Wang X; Cui Z; Hou Y; Meng F; Yu X; Wu J; Zhang F
    Environ Res; 2020 May; 184():109319. PubMed ID: 32151842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nutrient losses and greenhouse gas emissions from dairy production in China: Lessons learned from historical changes and regional differences.
    Zhang N; Bai Z; Luo J; Ledgard S; Wu Z; Ma L
    Sci Total Environ; 2017 Nov; 598():1095-1105. PubMed ID: 28482457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. China's roadmap to plastic waste management and associated economic costs.
    Sun Y; Liu S; Wang P; Jian X; Liao X; Chen WQ
    J Environ Manage; 2022 May; 309():114686. PubMed ID: 35189513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nutritional and greenhouse gas impacts of removing animals from US agriculture.
    White RR; Hall MB
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10301-E10308. PubMed ID: 29133422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Current status and future potential of energy derived from Chinese agricultural land: a review.
    Zhai N; Mao C; Feng Y; Zhang T; Xing Z; Wang Y; Zou S; Yin D; Han X; Ren G; Yang G
    Biomed Res Int; 2015; 2015():824965. PubMed ID: 25874229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmental impacts and production performances of organic agriculture in China: A monetary valuation.
    Meng F; Qiao Y; Wu W; Smith P; Scott S
    J Environ Manage; 2017 Mar; 188():49-57. PubMed ID: 27930955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of different agricultural organic wastes on soil GHG emissions: During a 4-year field measurement in the North China Plain.
    Li Z; Wang D; Sui P; Long P; Yan L; Wang X; Yan P; Shen Y; Dai H; Yang X; Cui J; Chen Y
    Waste Manag; 2018 Nov; 81():202-210. PubMed ID: 30527036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scenario simulation of water security in China.
    Ouyang ZY; Zhao TQ; Wang RS; Leif S; Zhang QX
    J Environ Sci (China); 2004; 16(5):765-9. PubMed ID: 15559808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decoupling of greenhouse gas emissions from global agricultural production: 1970-2050.
    Bennetzen EH; Smith P; Porter JR
    Glob Chang Biol; 2016 Feb; 22(2):763-81. PubMed ID: 26451699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dietary shifts and nitrogen losses to water in urban China: the case of Shanghai.
    Sammarchi S; Li J; Yang Q
    Environ Sci Pollut Res Int; 2021 Aug; 28(30):40088-40102. PubMed ID: 32405944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ecosystem management and land conservation can substantially contribute to California's climate mitigation goals.
    Cameron DR; Marvin DC; Remucal JM; Passero MC
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):12833-12838. PubMed ID: 29133408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finding pathways to national-scale land-sector sustainability.
    Gao L; Bryan BA
    Nature; 2017 Apr; 544(7649):217-222. PubMed ID: 28406202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactive nitrogen losses from China's food system for the shared socioeconomic pathways (SSPs).
    Wang M; Kroeze C; Strokal M; Ma L
    Sci Total Environ; 2017 Dec; 605-606():884-893. PubMed ID: 28686992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lower pork consumption and technological change in feed production can reduce the pork supply chain environmental footprint in China.
    Tong B; Zhang L; Hou Y; Oenema O; Long W; Velthof G; Ma W; Zhang F
    Nat Food; 2023 Jan; 4(1):74-83. PubMed ID: 37118572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmental sustainability assessment using dynamic Autoregressive-Distributed Lag simulations-Nexus between greenhouse gas emissions, biomass energy, food and economic growth.
    Sarkodie SA; Strezov V; Weldekidan H; Asamoah EF; Owusu PA; Doyi INY
    Sci Total Environ; 2019 Jun; 668():318-332. PubMed ID: 30852209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability.
    Walling E; Vaneeckhaute C
    J Environ Manage; 2020 Dec; 276():111211. PubMed ID: 32987233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.