BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 30610624)

  • 1. Plant DNA Repair Pathways and Their Applications in Genome Engineering.
    Que Q; Chen Z; Kelliher T; Skibbe D; Dong S; Chilton MD
    Methods Mol Biol; 2019; 1917():3-24. PubMed ID: 30610624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA Break Repair in Plants and Its Application for Genome Engineering.
    Schmidt C; Pacher M; Puchta H
    Methods Mol Biol; 2019; 1864():237-266. PubMed ID: 30415341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating DNA Repair Pathways to Improve Precision Genome Engineering.
    Pawelczak KS; Gavande NS; VanderVere-Carozza PS; Turchi JJ
    ACS Chem Biol; 2018 Feb; 13(2):389-396. PubMed ID: 29210569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Homologous End Joining and Homology Directed DNA Repair Frequency of Double-Stranded Breaks Introduced by Genome Editing Reagents.
    Zaboikin M; Zaboikina T; Freter C; Srinivasakumar N
    PLoS One; 2017; 12(1):e0169931. PubMed ID: 28095454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designed nucleases for targeted genome editing.
    Lee J; Chung JH; Kim HM; Kim DW; Kim H
    Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product.
    Pacher M; Puchta H
    Plant J; 2017 May; 90(4):819-833. PubMed ID: 28027431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The Choice of a Donor Molecule in Genome Editing Experiments in Animal Cells].
    Volodina OV; Smirnikhina SA
    Mol Biol (Mosk); 2022; 56(3):428-438. PubMed ID: 35621098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining.
    Bonawitz ND; Ainley WM; Itaya A; Chennareddy SR; Cicak T; Effinger K; Jiang K; Mall TK; Marri PR; Samuel JP; Sardesai N; Simpson M; Folkerts O; Sarria R; Webb SR; Gonzalez DO; Simmonds DH; Pareddy DR
    Plant Biotechnol J; 2019 Apr; 17(4):750-761. PubMed ID: 30220095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining.
    Maruyama T; Dougan SK; Truttmann MC; Bilate AM; Ingram JR; Ploegh HL
    Nat Biotechnol; 2015 May; 33(5):538-42. PubMed ID: 25798939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing.
    Miyaoka Y; Berman JR; Cooper SB; Mayerl SJ; Chan AH; Zhang B; Karlin-Neumann GA; Conklin BR
    Sci Rep; 2016 Mar; 6():23549. PubMed ID: 27030102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme.
    Wang J; Friedman G; Doyon Y; Wang NS; Li CJ; Miller JC; Hua KL; Yan JJ; Babiarz JE; Gregory PD; Holmes MC
    Genome Res; 2012 Jul; 22(7):1316-26. PubMed ID: 22434427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-Stranded Break Repair in Mammalian Cells and Precise Genome Editing.
    Ali A; Xiao W; Babar ME; Bi Y
    Genes (Basel); 2022 Apr; 13(5):. PubMed ID: 35627122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage.
    Vu GTH; Cao HX; Reiss B; Schubert I
    New Phytol; 2017 Jun; 214(4):1712-1721. PubMed ID: 28245065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA Double-Strand Break Repairs and Their Application in Plant DNA Integration.
    Shen H; Li Z
    Genes (Basel); 2022 Feb; 13(2):. PubMed ID: 35205367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Transcriptomic Analysis to Assess Double-Strand Break Repair Activity: Towards Precise in vivo Genome Editing.
    Pasquini G; Cora V; Swiersy A; Achberger K; Antkowiak L; Müller B; Wimmer T; Fraschka SA; Casadei N; Ueffing M; Liebau S; Stieger K; Busskamp V
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32085662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-homologous DNA end joining and alternative pathways to double-strand break repair.
    Chang HHY; Pannunzio NR; Adachi N; Lieber MR
    Nat Rev Mol Cell Biol; 2017 Aug; 18(8):495-506. PubMed ID: 28512351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise plant genome editing using base editors and prime editors.
    Molla KA; Sretenovic S; Bansal KC; Qi Y
    Nat Plants; 2021 Sep; 7(9):1166-1187. PubMed ID: 34518669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligation-assisted homologous recombination enables precise genome editing by deploying both MMEJ and HDR.
    Zhao Z; Shang P; Sage F; Geijsen N
    Nucleic Acids Res; 2022 Jun; 50(11):e62. PubMed ID: 35212386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.