BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 30610624)

  • 21. Non-homologous DNA end joining and alternative pathways to double-strand break repair.
    Chang HHY; Pannunzio NR; Adachi N; Lieber MR
    Nat Rev Mol Cell Biol; 2017 Aug; 18(8):495-506. PubMed ID: 28512351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Precise plant genome editing using base editors and prime editors.
    Molla KA; Sretenovic S; Bansal KC; Qi Y
    Nat Plants; 2021 Sep; 7(9):1166-1187. PubMed ID: 34518669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligation-assisted homologous recombination enables precise genome editing by deploying both MMEJ and HDR.
    Zhao Z; Shang P; Sage F; Geijsen N
    Nucleic Acids Res; 2022 Jun; 50(11):e62. PubMed ID: 35212386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Target residence of Cas9-sgRNA influences DNA double-strand break repair pathway choices in CRISPR/Cas9 genome editing.
    Liu SC; Feng YL; Sun XN; Chen RD; Liu Q; Xiao JJ; Zhang JN; Huang ZC; Xiang JF; Chen GQ; Yang Y; Lou C; Li HD; Cai Z; Xu SM; Lin H; Xie AY
    Genome Biol; 2022 Aug; 23(1):165. PubMed ID: 35915475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Precise and efficient nucleotide substitution near genomic nick via noncanonical homology-directed repair.
    Nakajima K; Zhou Y; Tomita A; Hirade Y; Gurumurthy CB; Nakada S
    Genome Res; 2018 Feb; 28(2):223-230. PubMed ID: 29273627
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.
    Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H
    Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency.
    Canny MD; Moatti N; Wan LCK; Fradet-Turcotte A; Krasner D; Mateos-Gomez PA; Zimmermann M; Orthwein A; Juang YC; Zhang W; Noordermeer SM; Seclen E; Wilson MD; Vorobyov A; Munro M; Ernst A; Ng TF; Cho T; Cannon PM; Sidhu SS; Sicheri F; Durocher D
    Nat Biotechnol; 2018 Jan; 36(1):95-102. PubMed ID: 29176614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
    Murmann-Konda T; Soni A; Stuschke M; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of homology-directed repair with chromatin donor templates in cells.
    Cruz-Becerra G; Kadonaga JT
    Elife; 2020 Apr; 9():. PubMed ID: 32343230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Progress in gene editing tools, implications and success in plants: a review.
    Bhuyan SJ; Kumar M; Ramrao Devde P; Rai AC; Mishra AK; Singh PK; Siddique KHM
    Front Genome Ed; 2023; 5():1272678. PubMed ID: 38144710
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Natural insertions in rice commonly form tandem duplications indicative of patch-mediated double-strand break induction and repair.
    Vaughn JN; Bennetzen JL
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6684-9. PubMed ID: 24760826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing.
    Peterka M; Akrap N; Li S; Wimberger S; Hsieh PP; Degtev D; Bestas B; Barr J; van de Plassche S; Mendoza-Garcia P; Šviković S; Sienski G; Firth M; Maresca M
    Nat Commun; 2022 Mar; 13(1):1240. PubMed ID: 35332138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping the genetic landscape of DNA double-strand break repair.
    Hussmann JA; Ling J; Ravisankar P; Yan J; Cirincione A; Xu A; Simpson D; Yang D; Bothmer A; Cotta-Ramusino C; Weissman JS; Adamson B
    Cell; 2021 Oct; 184(22):5653-5669.e25. PubMed ID: 34672952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis.
    Davila JI; Arrieta-Montiel MP; Wamboldt Y; Cao J; Hagmann J; Shedge V; Xu YZ; Weigel D; Mackenzie SA
    BMC Biol; 2011 Sep; 9():64. PubMed ID: 21951689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.
    Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW
    Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An update on precision genome editing by homology-directed repair in plants.
    Chen J; Li S; He Y; Li J; Xia L
    Plant Physiol; 2022 Mar; 188(4):1780-1794. PubMed ID: 35238390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana.
    Fauser F; Schiml S; Puchta H
    Plant J; 2014 Jul; 79(2):348-59. PubMed ID: 24836556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement.
    Sun Y; Li J; Xia L
    Front Plant Sci; 2016; 7():1928. PubMed ID: 28066481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strategies for In Vivo Genome Editing in Nondividing Cells.
    Nami F; Basiri M; Satarian L; Curtiss C; Baharvand H; Verfaillie C
    Trends Biotechnol; 2018 Aug; 36(8):770-786. PubMed ID: 29685818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.