These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 30610624)

  • 41. Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells.
    Shy BR; MacDougall MS; Clarke R; Merrill BJ
    Nucleic Acids Res; 2016 Sep; 44(16):7997-8010. PubMed ID: 27484482
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Homology-based double-strand break-induced genome engineering in plants.
    Steinert J; Schiml S; Puchta H
    Plant Cell Rep; 2016 Jul; 35(7):1429-38. PubMed ID: 27084537
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Endogenous sequence patterns predispose the repair modes of CRISPR/Cas9-induced DNA double-stranded breaks in Arabidopsis thaliana.
    Vu GTH; Cao HX; Fauser F; Reiss B; Puchta H; Schubert I
    Plant J; 2017 Oct; 92(1):57-67. PubMed ID: 28696528
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Rapid TALEN Assembly Protocol.
    Akmammedov A; Katsuyama T; Paro R
    Methods Mol Biol; 2016; 1480():269-81. PubMed ID: 27659992
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions.
    Lo TW; Pickle CS; Lin S; Ralston EJ; Gurling M; Schartner CM; Bian Q; Doudna JA; Meyer BJ
    Genetics; 2013 Oct; 195(2):331-48. PubMed ID: 23934893
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Control of gene editing by manipulation of DNA repair mechanisms.
    Danner E; Bashir S; Yumlu S; Wurst W; Wefers B; Kühn R
    Mamm Genome; 2017 Aug; 28(7-8):262-274. PubMed ID: 28374058
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increasing CRISPR/Cas9-mediated homology-directed DNA repair by histone deacetylase inhibitors.
    Li G; Zhang X; Wang H; Liu D; Li Z; Wu Z; Yang H
    Int J Biochem Cell Biol; 2020 Aug; 125():105790. PubMed ID: 32534122
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
    Jasin M; Haber JE
    DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gene editing using ssODNs with engineered endonucleases.
    Chen F; Pruett-Miller SM; Davis GD
    Methods Mol Biol; 2015; 1239():251-65. PubMed ID: 25408411
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CRISPR/Cas9-Based Genome Editing Toolbox for Arabidopsis thaliana.
    Miki D; Zinta G; Zhang W; Peng F; Feng Z; Zhu JK
    Methods Mol Biol; 2021; 2200():121-146. PubMed ID: 33175375
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CRISPR with a Happy Ending: Non-Templated DNA Repair for Prokaryotic Genome Engineering.
    Finger-Bou M; Orsi E; van der Oost J; Staals RHJ
    Biotechnol J; 2020 Jul; 15(7):e1900404. PubMed ID: 32558098
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Different DNA repair pathways are involved in single-strand break-induced genomic changes in plants.
    Wolter F; Schindele P; Beying N; Scheben A; Puchta H
    Plant Cell; 2021 Nov; 33(11):3454-3469. PubMed ID: 34375428
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improvement of base editors and prime editors advances precision genome engineering in plants.
    Hua K; Han P; Zhu JK
    Plant Physiol; 2022 Mar; 188(4):1795-1810. PubMed ID: 34962995
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens.
    Huang J; Cook DE
    FEMS Microbiol Rev; 2022 Nov; 46(6):. PubMed ID: 35810003
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks.
    Stephanou NC; Gao F; Bongiorno P; Ehrt S; Schnappinger D; Shuman S; Glickman MS
    J Bacteriol; 2007 Jul; 189(14):5237-46. PubMed ID: 17496093
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous precise editing of multiple genes in human cells.
    Riesenberg S; Chintalapati M; Macak D; Kanis P; Maricic T; Pääbo S
    Nucleic Acids Res; 2019 Nov; 47(19):e116. PubMed ID: 31392986
    [TBL] [Abstract][Full Text] [Related]  

  • 57. TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice.
    Li T; Liu B; Chen CY; Yang B
    J Genet Genomics; 2016 May; 43(5):297-305. PubMed ID: 27180265
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized?
    Trimidal SG; Benjamin R; Bae JE; Han MV; Kong E; Singer A; Williams TS; Yang B; Schiller MR
    Bioessays; 2019 Dec; 41(12):e1900126. PubMed ID: 31693213
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancing HR Frequency for Precise Genome Editing in Plants.
    Chen H; Neubauer M; Wang JP
    Front Plant Sci; 2022; 13():883421. PubMed ID: 35592579
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulation of DNA double-strand break repair as a strategy to improve precise genome editing.
    Ray U; Raghavan SC
    Oncogene; 2020 Oct; 39(41):6393-6405. PubMed ID: 32884115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.