These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30610631)

  • 41. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants.
    Jiang Y; An X; Li Z; Yan T; Zhu T; Xie K; Liu S; Hou Q; Zhao L; Wu S; Liu X; Zhang S; He W; Li F; Li J; Wan X
    Plant Biotechnol J; 2021 Sep; 19(9):1769-1784. PubMed ID: 33772993
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cytological Observations and Bulked-Segregant Analysis Coupled Global Genome Sequencing Reveal Two Genes Associated with Pollen Fertility in Tetraploid Rice.
    Kamara N; Jiao Y; Lu Z; Aloryi KD; Wu J; Liu X; Shahid MQ
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467721
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cytological observation of anther structure and genetic investigation of a thermo-sensitive genic male sterile line 373S in Brassica napus L.
    Sun Y; Zhang D; Wang Z; Guo Y; Sun X; Li W; Zhi W; Hu S
    BMC Plant Biol; 2020 Jan; 20(1):8. PubMed ID: 31906856
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of CRISPR/Cas9-Based Gene Editing to Simultaneously Mutate Multiple Homologous Genes Required for Pollen Development and Male Fertility in Maize.
    Liu X; Zhang S; Jiang Y; Yan T; Fang C; Hou Q; Wu S; Xie K; An X; Wan X
    Cells; 2022 Jan; 11(3):. PubMed ID: 35159251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the MiR156, MiR5488 and MiR399 are Involved in the Regulation of Male Sterility in PTGMS Rice.
    Sun Y; Xiong X; Wang Q; Zhu L; Wang L; He Y; Zeng H
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668376
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice.
    Zhang Q; Shen BZ; Dai XK; Mei MH; Saghai Maroof MA; Li ZB
    Proc Natl Acad Sci U S A; 1994 Aug; 91(18):8675-9. PubMed ID: 7915844
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR/Cas9-mediated targeted T-DNA integration in rice.
    Lee K; Eggenberger AL; Banakar R; McCaw ME; Zhu H; Main M; Kang M; Gelvin SB; Wang K
    Plant Mol Biol; 2019 Mar; 99(4-5):317-328. PubMed ID: 30645710
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The transcription factor OsbHLH138 regulates thermosensitive genic male sterility in rice via activation of TMS5.
    Wen J; Wang L; Wang J; Zeng Y; Xu Y; Li S
    Theor Appl Genet; 2019 Jun; 132(6):1721-1732. PubMed ID: 30778635
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A quantitative proteomic analysis of the molecular mechanism underlying fertility conversion in thermo-sensitive genetic male sterility line AnnongS-1.
    Wang S; Tian Q; Zhou S; Mao D; Chen L
    BMC Plant Biol; 2019 Feb; 19(1):65. PubMed ID: 30744566
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Current advance on molecular genetic regulation of rice fertility].
    Xie YY; Tang JT; Yang BW; Hu J; Liu YG; Chen LT
    Yi Chuan; 2019 Aug; 41(8):703-715. PubMed ID: 31447421
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular mechanisms of hybrid sterility in rice.
    Xie Y; Shen R; Chen L; Liu YG
    Sci China Life Sci; 2019 Jun; 62(6):737-743. PubMed ID: 31119561
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of cytoplasmic effects and fine-mapping of a genic male sterile line in rice.
    Qin P; Wang Y; Li Y; Ma B; Li S
    PLoS One; 2013; 8(4):e61719. PubMed ID: 23613915
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CRISPR/Cas9 Guided Mutagenesis of
    Usman B; Zhao N; Nawaz G; Qin B; Liu F; Liu Y; Li R
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33810044
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A cellular mechanism underlying the restoration of thermo/photoperiod-sensitive genic male sterility.
    Shi QS; Lou Y; Shen SY; Wang SH; Zhou L; Wang JJ; Liu XL; Xiong SX; Han Y; Zhou HS; Huang XH; Wang S; Zhu J; Yang ZN
    Mol Plant; 2021 Dec; 14(12):2104-2114. PubMed ID: 34464765
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessment of the effect of ten heading time genes on reproductive transition and yield components in rice using a CRISPR/Cas9 system.
    Cui Y; Zhu M; Xu Z; Xu Q
    Theor Appl Genet; 2019 Jun; 132(6):1887-1896. PubMed ID: 30887096
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing.
    Li S; Shen L; Hu P; Liu Q; Zhu X; Qian Q; Wang K; Wang Y
    J Integr Plant Biol; 2019 Dec; 61(12):1201-1205. PubMed ID: 30623600
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An unedited 1.1 kb mitochondrial orfB gene transcript in the wild abortive cytoplasmic male sterility (WA-CMS) system of Oryza sativa L. subsp. indica.
    Das S; Sen S; Chakraborty A; Chakraborti P; Maiti MK; Basu A; Basu D; Sen SK
    BMC Plant Biol; 2010 Mar; 10():39. PubMed ID: 20193092
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Knocking Out MicroRNA Genes in Rice with CRISPR-Cas9.
    Zhou J; Zhong Z; Chen H; Li Q; Zheng X; Qi Y; Zhang Y
    Methods Mol Biol; 2019; 1917():109-119. PubMed ID: 30610632
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Analysis of heading time genotype for a rice photoperiod and thermo--sensitive male sterile line PeiAi64S].
    Xu JF; Jiang L; Wang GG; Liu SJ; Chen LM; Wang CM; Luo LG; Wan JM
    Yi Chuan Xue Bao; 2005 Jan; 32(1):57-65. PubMed ID: 15715439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.