These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30611082)

  • 1. Radiocesium accumulation in aquatic organisms: A global synthesis from an experimentalist's perspective.
    Metian M; Pouil S; Fowler SW
    J Environ Radioact; 2019 Mar; 198():147-158. PubMed ID: 30611082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of body size and temperature on
    Thomas DM; Fisher NS
    J Environ Radioact; 2019 Jun; 202():25-31. PubMed ID: 30776700
    [No Abstract]   [Full Text] [Related]  

  • 3. Status of (137)Cs contamination in marine biota along the Pacific coast of eastern Japan derived from a dynamic biological model two years simulation following the Fukushima accident.
    Tateda Y; Tsumune D; Tsubono T; Misumi K; Yamada M; Kanda J; Ishimaru T
    J Environ Radioact; 2016 Jan; 151 Pt 2():495-501. PubMed ID: 26070950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different factors determine
    Ishii Y; Matsuzaki SS; Hayashi S
    J Environ Radioact; 2020 Mar; 213():106102. PubMed ID: 31761685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental fate of radiocesium in biota inhabiting a contaminated ecosystem on the U.S. Department of Energy's Savannah River Site.
    Leaphart JC; Korotasz AM; Bryan AL; Beasley JC
    J Environ Radioact; 2020 Oct; 222():106321. PubMed ID: 32892897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-assessment of dose rates of (134)Cs, (137)Cs, and (60)Co for marine biota from discharge of Haiyang Nuclear Power Plant, China.
    Li J; Liu S; Zhang Y; Chen L; Yan Y; Cheng W; Lou H; Zhang Y
    J Environ Radioact; 2015 Sep; 147():8-13. PubMed ID: 26005771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaccumulation of
    Leaphart JC; Wilms KC; Bryan AL; Beasley JC
    J Environ Radioact; 2019 Jul; 203():25-29. PubMed ID: 30849558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of factors influencing accumulation of stable Sr and Cs in lake and coastal fish.
    Konovalenko L; Bradshaw C; Andersson E; Lindqvist D; Kautsky U
    J Environ Radioact; 2016 Aug; 160():64-79. PubMed ID: 27153476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The absence of the pCO
    Lacoue-Labarthe T; Oberhänsli F; Teyssié JL; Metian M
    J Environ Radioact; 2018 Dec; 192():10-13. PubMed ID: 29870834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiocesium biokinetics in olive flounder inhabiting the Fukushima accident-affected Pacific coastal waters of eastern Japan.
    Tateda Y; Tsumune D; Tsubono T; Aono T; Kanda J; Ishimaru T
    J Environ Radioact; 2015 Sep; 147():130-41. PubMed ID: 26065930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiocesium in migratory aquatic game birds using contaminated U.S. Department of Energy reactor-cooling reservoirs: A long-term perspective.
    Kennamer RA; Oldenkamp RE; Leaphart JC; King JD; Bryan AL; Beasley JC
    J Environ Radioact; 2017 May; 171():189-199. PubMed ID: 28273599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Difference of ecological half-life and transfer coefficient in aquatic invertebrates between high and low radiocesium contaminated streams.
    Yoshimura M; Akama A
    Sci Rep; 2020 Dec; 10(1):21819. PubMed ID: 33311547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiological impact of the nuclear power plant accident on freshwater fish in Fukushima: An overview of monitoring results.
    Wada T; Tomiya A; Enomoto M; Sato T; Morishita D; Izumi S; Niizeki K; Suzuki S; Morita T; Kawata G
    J Environ Radioact; 2016 Jan; 151 Pt 1():144-155. PubMed ID: 26454695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiocesium dynamics in the aquatic ecosystem of Lake Onuma on Mt. Akagi following the Fukushima Dai-ichi Nuclear Power Plant accident.
    Suzuki K; Watanabe S; Yuasa Y; Yamashita Y; Arai H; Tanaka H; Kuge T; Mori M; Tsunoda KI; Nohara S; Iwasaki Y; Minai Y; Okada Y; Nagao S
    Sci Total Environ; 2018 May; 622-623():1153-1164. PubMed ID: 29890584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on cesium desorption at the freshwater-seawater interface.
    Delaval A; Duffa C; Radakovitch O
    J Environ Radioact; 2020 Jul; 218():106255. PubMed ID: 32421587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic modelling of radionuclide uptake by marine biota: application to the Fukushima nuclear power plant accident.
    Vives i Batlle J
    J Environ Radioact; 2016 Jan; 151 Pt 2():502-11. PubMed ID: 25773012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposure of a herbivorous fish to ¹³⁴Cs and ¹³⁷Cs from the riverbed following the Fukushima disaster.
    Tsuboi J; Abe S; Fujimoto K; Kaeriyama H; Ambe D; Matsuda K; Enomoto M; Tomiya A; Morita T; Ono T; Yamamoto S; Iguchi K
    J Environ Radioact; 2015 Mar; 141():32-7. PubMed ID: 25500064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of radioactive cesium transfer in the southern Fukushima coastal biota using a dynamic food chain transfer model.
    Tateda Y; Tsumune D; Tsubono T
    J Environ Radioact; 2013 Oct; 124():1-12. PubMed ID: 23639689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fukushima derived radiocesium in subsistence-consumed northern fur seal and wild celery.
    Ruedig E; Duncan C; Dickerson B; Williams M; Gelatt T; Bell J; Johnson TE
    J Environ Radioact; 2016 Feb; 152():1-7. PubMed ID: 26630034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interspecific comparison of radiocesium trophic transfer in two tropical fish species.
    Pouil S; Teyssié JL; Fowler SW; Metian M; Warnau M
    J Environ Radioact; 2018 Sep; 189():261-265. PubMed ID: 29724458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.