These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30611428)

  • 1. Exploring Protein Conformational Landscapes Using High-Pressure NMR.
    Roche J; Royer CA; Roumestand C
    Methods Enzymol; 2019; 614():293-320. PubMed ID: 30611428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Resolution Mapping of a Repeat Protein Folding Free Energy Landscape.
    Fossat MJ; Dao TP; Jenkins K; Dellarole M; Yang Y; McCallum SA; Garcia AE; Barrick D; Roumestand C; Royer CA
    Biophys J; 2016 Dec; 111(11):2368-2376. PubMed ID: 27926838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of high-pressure nuclear magnetic resonance to study protein folding.
    Lassalle MW; Akasaka K
    Methods Mol Biol; 2007; 350():21-38. PubMed ID: 16957315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of intermediate states of the human prion protein by high pressure NMR spectroscopy.
    Kachel N; Kremer W; Zahn R; Kalbitzer HR
    BMC Struct Biol; 2006 Jul; 6():16. PubMed ID: 16846506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Evolutionary Covariance and NMR Data for Protein Structure Determination.
    Huang YJ; Brock KP; Ishida Y; Swapna GVT; Inouye M; Marks DS; Sander C; Montelione GT
    Methods Enzymol; 2019; 614():363-392. PubMed ID: 30611430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-pressure NMR techniques for the study of protein dynamics, folding and aggregation.
    Nguyen LM; Roche J
    J Magn Reson; 2017 Apr; 277():179-185. PubMed ID: 28363306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Pressure NMR and SAXS Reveals How Capping Modulates Folding Cooperativity of the pp32 Leucine-rich Repeat Protein.
    Zhang Y; Berghaus M; Klein S; Jenkins K; Zhang S; McCallum SA; Morgan JE; Winter R; Barrick D; Royer CA
    J Mol Biol; 2018 Apr; 430(9):1336-1349. PubMed ID: 29545082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins.
    Kamatari YO; Kitahara R; Yamada H; Yokoyama S; Akasaka K
    Methods; 2004 Sep; 34(1):133-43. PubMed ID: 15283922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring Unfolding of Titin I27 Single and Bi Domain with High-Pressure NMR Spectroscopy.
    Herrada I; Barthe P; Vanheusden M; DeGuillen K; Mammri L; Delbecq S; Rico F; Roumestand C
    Biophys J; 2018 Jul; 115(2):341-352. PubMed ID: 30021109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the initial folding sites and the entire folding processes for Ig-like beta-sandwich proteins.
    Aumpuchin P; Hamaue S; Kikuchi T
    Proteins; 2020 Jun; 88(6):740-758. PubMed ID: 31833097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of internal cavities on folding rates and routes revealed by real-time pressure-jump NMR spectroscopy.
    Roche J; Dellarole M; Caro JA; Norberto DR; Garcia AE; Garcia-Moreno B; Roumestand C; Royer CA
    J Am Chem Soc; 2013 Oct; 135(39):14610-8. PubMed ID: 23987660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP.
    Rozentur-Shkop E; Goobes G; Chill JH
    J Biomol NMR; 2016 Dec; 66(4):243-257. PubMed ID: 27844185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved in-cell structure determination of proteins at near-physiological concentration.
    Ikeya T; Hanashima T; Hosoya S; Shimazaki M; Ikeda S; Mishima M; Güntert P; Ito Y
    Sci Rep; 2016 Dec; 6():38312. PubMed ID: 27910948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring protein unfolding transitions by NMR-spectroscopy.
    Dreydoppel M; Balbach J; Weininger U
    J Biomol NMR; 2022 Apr; 76(1-2):3-15. PubMed ID: 34984658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic and structural effect of urea and guanidine chloride on the helical and on a hairpin fragment of GB1 from molecular simulations.
    Meloni R; Tiana G
    Proteins; 2017 Apr; 85(4):753-763. PubMed ID: 28120530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of heteromolecular binding sites in transcription factors Sp1 and TAF4 using high-resolution nuclear magnetic resonance spectroscopy.
    Hibino E; Inoue R; Sugiyama M; Kuwahara J; Matsuzaki K; Hoshino M
    Protein Sci; 2017 Nov; 26(11):2280-2290. PubMed ID: 28857320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure and Chemical Unfolding of an α-Helical Bundle Protein: The GH2 Domain of the Protein Adaptor GIPC1.
    Dubois C; Planelles-Herrero VJ; Tillatte-Tripodi C; Delbecq S; Mammri L; Sirkia EM; Ropars V; Roumestand C; Barthe P
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the free energy landscape of the fast-folding gpW protein by relaxation dispersion NMR.
    Sanchez-Medina C; Sekhar A; Vallurupalli P; Cerminara M; Muñoz V; Kay LE
    J Am Chem Soc; 2014 May; 136(20):7444-51. PubMed ID: 24805164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining High-Pressure Perturbation with NMR Spectroscopy for a Structural and Dynamical Characterization of Protein Folding Pathways.
    Dubois C; Herrada I; Barthe P; Roumestand C
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33256081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.