BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 30611479)

  • 1. Impact of antioxidant on the stability of β-carotene in model beverage emulsions: Role of emulsion interfacial membrane.
    Song HY; Moon TW; Choi SJ
    Food Chem; 2019 May; 279():194-201. PubMed ID: 30611479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Bioavailability, Cellular Antioxidant Activity, and Cytotoxicity of β-Carotene-Loaded Emulsions Stabilized by Catechin-Egg White Protein Conjugates.
    Gu L; Pan C; Su Y; Zhang R; Xiao H; McClements DJ; Yang Y
    J Agric Food Chem; 2018 Feb; 66(7):1649-1657. PubMed ID: 29385797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of pH, metal chelator, free radical scavenger and interfacial characteristics on the oxidative stability of β-carotene in conjugated whey protein-pectin stabilised emulsion.
    Xu D; Yuan F; Gao Y; McClements DJ; Decker EA
    Food Chem; 2013 Aug; 139(1-4):1098-104. PubMed ID: 23561214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection of β-carotene from chemical degradation in emulsion-based delivery systems using antioxidant interfacial complexes: Catechin-egg white protein conjugates.
    Gu L; Su Y; Zhang M; Chang C; Li J; McClements DJ; Yang Y
    Food Res Int; 2017 Jun; 96():84-93. PubMed ID: 28528111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of β-carotene degradation in oil-in-water nanoemulsions: influence of oil-soluble and water-soluble antioxidants.
    Qian C; Decker EA; Xiao H; McClements DJ
    Food Chem; 2012 Dec; 135(3):1036-43. PubMed ID: 22953821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of emulsion interfacial membrane characteristics on Ostwald ripening in a model emulsion.
    Han SW; Song HY; Moon TW; Choi SJ
    Food Chem; 2018 Mar; 242():91-97. PubMed ID: 29037741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of β-carotene with WPI/Tween 80 mixture and oil phase: Effect on the behavior of O/W emulsions during in vitro digestion.
    Gomes A; Costa ALR; Cardoso DD; Náthia-Neves G; Meireles MAA; Cunha RL
    Food Chem; 2021 Mar; 341(Pt 2):128155. PubMed ID: 33045587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spray-drying and rehydration on β-carotene encapsulated Pickering emulsion with chitosan and seaweed polyphenol.
    Meng W; Sun H; Mu T; Garcia-Vaquero M
    Int J Biol Macromol; 2024 May; 268(Pt 1):131654. PubMed ID: 38641273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physicochemical stability, antioxidant properties and bioaccessibility of β-carotene in orange oil-in-water beverage emulsions: influence of carrier oil types.
    Meroni E; Raikos V
    Food Funct; 2018 Jan; 9(1):320-330. PubMed ID: 29177307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physicochemical properties of β-carotene emulsions stabilized by chlorogenic acid-lactoferrin-glucose/polydextrose conjugates.
    Liu F; Wang D; Xu H; Sun C; Gao Y
    Food Chem; 2016 Apr; 196():338-46. PubMed ID: 26593499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaccessibility and stability of β-carotene encapsulated in plant-based emulsions: impact of emulsifier type and tannic acid.
    Li R; Tan Y; Dai T; Zhang R; Fu G; Wan Y; Liu C; McClements DJ
    Food Funct; 2019 Nov; 10(11):7239-7252. PubMed ID: 31617530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lotus seedpod proanthocyanidin-whey protein complexes: Impact on physical and chemical stability of β-carotene-nanoemulsions.
    Chen Y; Zhang R; Xie B; Sun Z; McClements DJ
    Food Res Int; 2020 Jan; 127():108738. PubMed ID: 31882082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of interfacial characteristics and antioxidant polarity on the chemical stability of β-carotene in emulsions prepared using non-ionic surfactant blends.
    Park J; Choi SJ
    Food Chem; 2022 Feb; 369():130945. PubMed ID: 34469841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of flavonoids and β-carotene during the auto-oxidative deterioration of model food oil-in water emulsions.
    Kiokias S; Varzakas T
    Food Chem; 2014 May; 150():280-6. PubMed ID: 24360451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Stability of Lycopene from Chemical Degradation in Model Beverage Emulsions: Impact of Hydrophilic Group Size of Emulsifier and Antioxidant Polarity.
    Kim J; Choi SJ
    Foods; 2020 Jul; 9(8):. PubMed ID: 32707864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical stability and gastrointestinal fate of β-carotene-loaded oil-in-water emulsions stabilized by whey protein isolate-low acyl gellan gum conjugates.
    Nooshkam M; Varidi M
    Food Chem; 2021 Jun; 347():129079. PubMed ID: 33493834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Surfactant Volume Fraction on the Antioxidant Efficiency and on The Interfacial Concentrations of Octyl and Tetradecyl
    Costa M; Losada-Barreiro S; Paiva-Martins F; Bravo-Díaz C
    Molecules; 2021 Oct; 26(19):. PubMed ID: 34641602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation on oxidative stability of walnut beverage emulsions.
    Liu S; Liu F; Xue Y; Gao Y
    Food Chem; 2016 Jul; 203():409-416. PubMed ID: 26948632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ostwald Ripening Rate of Orange Oil Emulsions: Effects of Molecular Structure of Emulsifiers and Their Oil Composition.
    Jang Y; Park J; Song HY; Choi SJ
    J Food Sci; 2019 Mar; 84(3):440-447. PubMed ID: 30714618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stable high internal phase emulsion fabricated with OSA-modified starch: an improvement in β-carotene stability and bioaccessibility.
    Yan C; McClements DJ; Zou L; Liu W
    Food Funct; 2019 Sep; 10(9):5446-5460. PubMed ID: 31403644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.