BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30611981)

  • 21. (-)-Homosalinosporamide A and Its Mode of Proteasome Inhibition: An X-ray Crystallographic Study.
    Groll M; Nguyen H; Vellalath S; Romo D
    Mar Drugs; 2018 Jul; 16(7):. PubMed ID: 30029468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive mass spectrometric analysis of the 20S proteasome complex.
    Huang L; Burlingame AL
    Methods Enzymol; 2005; 405():187-236. PubMed ID: 16413316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular modeling on porphyrin derivatives as β5 subunit inhibitor of 20S proteasome.
    Arba M; Nur-Hidayat A; Ruslin ; Yusuf M; Sumarlin ; Hertadi R; Wahyudi ST; Surantaadmaja SI; Tjahjono DH
    Comput Biol Chem; 2018 Jun; 74():230-238. PubMed ID: 29674291
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly.
    Arendt CS; Hochstrasser M
    EMBO J; 1999 Jul; 18(13):3575-85. PubMed ID: 10393174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights on the Origin of Catalysis on Glycine N-Methyltransferase from Computational Modeling.
    Świderek K; Tuñón I; Williams IH; Moliner V
    J Am Chem Soc; 2018 Mar; 140(12):4327-4334. PubMed ID: 29460630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical Studies of the Acid-Base Equilibria in a Model Active Site of the Human 20S Proteasome.
    Uranga J; Hasecke L; Proppe J; Fingerhut J; Mata RA
    J Chem Inf Model; 2021 Apr; 61(4):1942-1953. PubMed ID: 33719420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis.
    Park H; Brothers EN; Merz KM
    J Am Chem Soc; 2005 Mar; 127(12):4232-41. PubMed ID: 15783205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rearrangement of the 16S precursor subunits is essential for the formation of the active 20S proteasome.
    Mullapudi S; Pullan L; Bishop OT; Khalil H; Stoops JK; Beckmann R; Kloetzel PM; Krüger E; Penczek PA
    Biophys J; 2004 Dec; 87(6):4098-105. PubMed ID: 15361411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery of novel covalent proteasome inhibitors through a combination of pharmacophore screening, covalent docking, and molecular dynamics simulations.
    Li A; Sun H; Du L; Wu X; Cao J; You Q; Li Y
    J Mol Model; 2014 Nov; 20(11):2515. PubMed ID: 25394401
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Covalent docking modelling-based discovery of tripeptidyl epoxyketone proteasome inhibitors composed of aliphatic-heterocycles.
    Dong XW; Zhang JK; Xu L; Che JX; Cheng G; Hu XB; Sheng L; Gao AH; Li J; Liu T; Hu YZ; Zhou YB
    Eur J Med Chem; 2019 Feb; 164():602-614. PubMed ID: 30639896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward a full characterization of the human 20S proteasome subunits and their isoforms by a combination of proteomic approaches.
    Uttenweiler-Joseph S; Claverol S; Sylvius L; Bousquet-Dubouch MP; Burlet-Schiltz O; Monsarrat B
    Methods Mol Biol; 2008; 484():111-30. PubMed ID: 18592176
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome.
    Huber EM; Heinemeyer W; Li X; Arendt CS; Hochstrasser M; Groll M
    Nat Commun; 2016 Mar; 7():10900. PubMed ID: 26964885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical study of the mechanism of protein arginine deiminase 4 (PAD4) inhibition by F-amidine.
    Li D; Liu C; Lin J
    J Mol Graph Model; 2015 Feb; 55():25-32. PubMed ID: 25424656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of Ser-154, Cys-113, and the phosphorylated threonine residue on the catalytic reaction mechanism of Pin1.
    Vöhringer-Martinez E; Verstraelen T; Ayers PW
    J Phys Chem B; 2014 Aug; 118(33):9871-80. PubMed ID: 25059768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical Studies on Mechanism of Inactivation of Kanamycin A by 4'-O-Nucleotidyltransferase.
    Martí S; Bastida A; Świderek K
    Front Chem; 2018; 6():660. PubMed ID: 30761287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Docking studies and model development of tea polyphenol proteasome inhibitors: applications to rational drug design.
    Smith DM; Daniel KG; Wang Z; Guida WC; Chan TH; Dou QP
    Proteins; 2004 Jan; 54(1):58-70. PubMed ID: 14705024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. VTST/MT studies of the catalytic mechanism of C-H activation by transition metal complexes with [Cu
    Kim Y; Mai BK; Park S
    J Biol Inorg Chem; 2017 Apr; 22(2-3):321-338. PubMed ID: 28091753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determinants of regioselectivity and chemoselectivity in fosfomycin resistance protein FosA from QM/MM calculations.
    Liao RZ; Thiel W
    J Phys Chem B; 2013 Feb; 117(5):1326-36. PubMed ID: 23320732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ab initio QM/MM free energy simulations of peptide bond formation in the ribosome support an eight-membered ring reaction mechanism.
    Xu J; Zhang JZ; Xiang Y
    J Am Chem Soc; 2012 Oct; 134(39):16424-9. PubMed ID: 22953775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.