BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 30612178)

  • 1. Comparison of turn-on and ratiometric fluorescent G-quadruplex aptasensor approaches for the detection of ATP.
    Srinivasan S; Ranganathan V; DeRosa MC; Murari BM
    Anal Bioanal Chem; 2019 Mar; 411(7):1319-1330. PubMed ID: 30612178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A facile label-free G-quadruplex based fluorescent aptasensor method for rapid detection of ATP.
    Liu H; Ma C; Ning F; Chen H; He H; Wang K; Wang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():164-167. PubMed ID: 28038373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range.
    Wei Y; Chen Y; Li H; Shuang S; Dong C; Wang G
    Biosens Bioelectron; 2015 Jan; 63():311-316. PubMed ID: 25113049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free fluorescent aptasensor for potassium ion using structure-switching aptamers and berberine.
    Guo Y; Chen Y; Wei Y; Li H; Dong C
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1635-41. PubMed ID: 25459726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles.
    Song Q; Wang R; Sun F; Chen H; Wang Z; Na N; Ouyang J
    Biosens Bioelectron; 2017 Jan; 87():760-763. PubMed ID: 27649332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel strategy to improve the sensing performances of split ATP aptamer based fluorescent indicator displacement assay through enhanced molecular recognition.
    Ma Y; Geng F; Wang Y; Xu M; Shao C; Qu P; Zhang Y; Ye B
    Biosens Bioelectron; 2019 Jun; 134():36-41. PubMed ID: 30954924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A G-quadruplex-based Label-free Fluorometric Aptasensor for Adenosine Triphosphate Detection.
    Li LJ; Tian X; Kong XJ; Chu X
    Anal Sci; 2015; 31(6):469-73. PubMed ID: 26063007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of dynamic ATP level changes by oligomycin-modulated ATP synthase inhibition in SW480 cancer cells using fluorescent "On-Off" switching DNA aptamer.
    Ratajczak K; Lukasiak A; Grel H; Dworakowska B; Jakiela S; Stobiecka M
    Anal Bioanal Chem; 2019 Oct; 411(26):6899-6911. PubMed ID: 31407049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a Fluorescence Turn-on and Label-free Aptasensor Using the Intrinsic Quenching Power of G-Quadruplex to AMT.
    Wang D; Geng F; Wang Y; Ma Y; Li G; Qu P; Shao C; Xu M
    Anal Sci; 2020 Aug; 36(8):965-970. PubMed ID: 32062632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimeric Aptamers-Based and MoS
    Fan YY; Mou ZL; Wang M; Li J; Zhang J; Dang FQ; Zhang ZQ
    Anal Chem; 2018 Nov; 90(22):13708-13713. PubMed ID: 30350952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization.
    Qiu Z; Shu J; He Y; Lin Z; Zhang K; Lv S; Tang D
    Biosens Bioelectron; 2017 Jan; 87():18-24. PubMed ID: 27504793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly sensitive and widely adaptable plasmonic aptasensor using berberine for small-molecule detection.
    Park JH; Byun JY; Jang H; Hong D; Kim MG
    Biosens Bioelectron; 2017 Nov; 97():292-298. PubMed ID: 28618365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An enzyme-free and label-free fluorescent biosensor for small molecules by G-quadruplex based hybridization chain reaction.
    Chen Q; Guo Q; Chen Y; Pang J; Fu F; Guo L
    Talanta; 2015 Jun; 138():15-19. PubMed ID: 25863365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy.
    Bao T; Shu H; Wen W; Zhang X; Wang S
    Anal Chim Acta; 2015 Mar; 862():64-9. PubMed ID: 25682429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green fluorescent carbon quantum dots functionalized with polyethyleneimine, and their application to aptamer-based determination of thrombin and ATP.
    Guo Y; Zhang J; Zhang W; Hu D
    Mikrochim Acta; 2019 Oct; 186(11):717. PubMed ID: 31654277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A split aptamer-labeled ratiometric fluorescent biosensor for specific detection of adenosine in human urine.
    You J; You Z; Xu X; Ji J; Lu T; Xia Y; Wang L; Zhang L; Du S
    Mikrochim Acta; 2018 Dec; 186(1):43. PubMed ID: 30569231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate.
    Qu F; Sun C; Lv X; You J
    Mikrochim Acta; 2018 Jul; 185(8):359. PubMed ID: 29978289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aptasensor based on fluorescence resonance energy transfer for the analysis of adenosine in urine samples of lung cancer patients.
    Hashemian Z; Khayamian T; Saraji M; Shirani MP
    Biosens Bioelectron; 2016 May; 79():334-40. PubMed ID: 26722763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel aptasensor for the ultra-sensitive detection of adenosine triphosphate via aptamer/quantum dot based resonance energy transfer.
    Li Z; Wang Y; Liu Y; Zeng Y; Huang A; Peng N; Liu X; Liu J
    Analyst; 2013 Sep; 138(17):4732-6. PubMed ID: 23814782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fluorescent aptasensor for analysis of adenosine triphosphate based on aptamer-magnetic nanoparticles and its single-stranded complementary DNA labeled carbon dots.
    Saberi Z; Rezaei B; Khayamian T
    Luminescence; 2018 Jun; 33(4):640-646. PubMed ID: 29380946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.