These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 30612223)

  • 41. Eawag-Soil in enviPath: a new resource for exploring regulatory pesticide soil biodegradation pathways and half-life data.
    Latino DA; Wicker J; Gütlein M; Schmid E; Kramer S; Fenner K
    Environ Sci Process Impacts; 2017 Mar; 19(3):449-464. PubMed ID: 28229138
    [TBL] [Abstract][Full Text] [Related]  

  • 42. vNN Web Server for ADMET Predictions.
    Schyman P; Liu R; Desai V; Wallqvist A
    Front Pharmacol; 2017; 8():889. PubMed ID: 29255418
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MyCompoundID MS/MS Search: Metabolite Identification Using a Library of Predicted Fragment-Ion-Spectra of 383,830 Possible Human Metabolites.
    Huan T; Tang C; Li R; Shi Y; Lin G; Li L
    Anal Chem; 2015 Oct; 87(20):10619-26. PubMed ID: 26415007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling ADMET.
    Ghosh J; Lawless MS; Waldman M; Gombar V; Fraczkiewicz R
    Methods Mol Biol; 2016; 1425():63-83. PubMed ID: 27311462
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Site of metabolism prediction for six biotransformations mediated by cytochromes P450.
    Zheng M; Luo X; Shen Q; Wang Y; Du Y; Zhu W; Jiang H
    Bioinformatics; 2009 May; 25(10):1251-8. PubMed ID: 19286831
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automated pathway and reaction prediction facilitates in silico identification of unknown metabolites in human cohort studies.
    Quell JD; Römisch-Margl W; Colombo M; Krumsiek J; Evans AM; Mohney R; Salomaa V; de Faire U; Groop LC; Agakov F; Looker HC; McKeigue P; Colhoun HM; Kastenmüller G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Dec; 1071():58-67. PubMed ID: 28479069
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Influence of In Vivo Metabolic Modifications on ADMET Properties of Green Tea Catechins-In Silico Analysis.
    Matić S; Jadrijević-Mladar Takač M; Barbarić M; Lučić B; Gall Trošelj K; Stepanić V
    J Pharm Sci; 2018 Nov; 107(11):2957-2964. PubMed ID: 30077700
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Holistic evaluation of biodegradation pathway prediction: assessing multi-step reactions and intermediate products.
    Tam JYC; Lorsbach T; Schmidt S; Wicker JS
    J Cheminform; 2021 Sep; 13(1):63. PubMed ID: 34479624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In silico and in vitro metabolism studies of the new synthetic opiate AP-237 (bucinnazine) using bioinformatics tools.
    Pelletier R; Bourdais A; Fabresse N; Ferron PJ; Morel I; Gicquel T; Le Daré B
    Arch Toxicol; 2024 Jan; 98(1):165-179. PubMed ID: 37839054
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A machine learning-based approach to ERα bioactivity and drug ADMET prediction.
    An T; Chen Y; Chen Y; Ma L; Wang J; Zhao J
    Front Genet; 2022; 13():1087273. PubMed ID: 36685926
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of a computational tool to rival experts in the prediction of sites of metabolism of xenobiotics by p450s.
    Campagna-Slater V; Pottel J; Therrien E; Cantin LD; Moitessier N
    J Chem Inf Model; 2012 Sep; 52(9):2471-83. PubMed ID: 22916680
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Xenobiotic toxicity prediction combined with xenobiotic metabolism prediction in the human body].
    Rudik AV; Dmitriev AV; Lagunin AA; Ivanov SM; Filimonov DA; Poroikov VV
    Biomed Khim; 2019 Feb; 65(2):114-122. PubMed ID: 30950816
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MantaID: a machine learning-based tool to automate the identification of biological database IDs.
    Zeng Z; Hu J; Cao M; Li B; Wang X; Yu F; Mao L
    Database (Oxford); 2023 May; 2023():. PubMed ID: 37159241
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combined computational metabolite prediction and automated structure-based analysis of mass spectrometric data.
    Stranz DD; Miao S; Campbell S; Maydwell G; Ekins S
    Toxicol Mech Methods; 2008; 18(2-3):243-50. PubMed ID: 20020918
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MiPepid: MicroPeptide identification tool using machine learning.
    Zhu M; Gribskov M
    BMC Bioinformatics; 2019 Nov; 20(1):559. PubMed ID: 31703551
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 57. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure.
    Krivák R; Hoksza D
    J Cheminform; 2018 Aug; 10(1):39. PubMed ID: 30109435
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PROXIMAL: a method for Prediction of Xenobiotic Metabolism.
    Yousofshahi M; Manteiga S; Wu C; Lee K; Hassoun S
    BMC Syst Biol; 2015 Dec; 9():94. PubMed ID: 26695483
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In silico ADMET prediction: recent advances, current challenges and future trends.
    Cheng F; Li W; Liu G; Tang Y
    Curr Top Med Chem; 2013; 13(11):1273-89. PubMed ID: 23675935
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Critical evaluation of a simple retention time predictor based on LogKow as a complementary tool in the identification of emerging contaminants in water.
    Bade R; Bijlsma L; Sancho JV; Hernández F
    Talanta; 2015 Jul; 139():143-9. PubMed ID: 25882420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.