These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30612474)

  • 1. Assessment of an anti-scale low-frequency electromagnetic field device on drinking water biofilms.
    Gosselin F; Mathieu L; Block JC; Carteret C; Muhr H; Jorand FPA
    Biofouling; 2018 Oct; 34(9):1020-1031. PubMed ID: 30612474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced Efficiency of Chlorine Disinfection of Naegleria fowleri in a Drinking Water Distribution Biofilm.
    Miller HC; Wylie J; Dejean G; Kaksonen AH; Sutton D; Braun K; Puzon GJ
    Environ Sci Technol; 2015 Sep; 49(18):11125-31. PubMed ID: 26287820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of a low-frequency ultrasound device on prevention of biofilm formation and carbonate deposition in drinking water systems.
    Mathieu L; Keraval A; Declercq NF; Block JC
    Ultrason Sonochem; 2019 Apr; 52():41-49. PubMed ID: 30718177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection.
    Schwering M; Song J; Louie M; Turner RJ; Ceri H
    Biofouling; 2013 Sep; 29(8):917-28. PubMed ID: 23879183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial repopulation of drinking water pipe walls after chlorination.
    Mathieu L; Francius G; El Zein R; Angel E; Block JC
    Biofouling; 2016 Sep; 32(8):925-34. PubMed ID: 27483985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of disinfection on drinking water biofilm bacterial community.
    Mi Z; Dai Y; Xie S; Chen C; Zhang X
    J Environ Sci (China); 2015 Nov; 37():200-5. PubMed ID: 26574105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency electromagnetic fields as an alternative to sanitize water of drinking systems in poultry production?
    Mateus-Vargas RH; Kemper N; Volkmann N; Kietzmann M; Meissner J; Schulz J
    PLoS One; 2019; 14(7):e0220302. PubMed ID: 31344112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of drinking water conditions and copper materials on downstream biofilm microbial communities and Legionella pneumophila colonization.
    Lu J; Buse HY; Gomez-Alvarez V; Struewing I; Santo Domingo J; Ashbolt NJ
    J Appl Microbiol; 2014 Sep; 117(3):905-18. PubMed ID: 24935752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of operational conditions on drinking water biofilm dynamics and coliform invasion potential.
    Waegenaar F; García-Timermans C; Van Landuyt J; De Gusseme B; Boon N
    Appl Environ Microbiol; 2024 May; 90(5):e0004224. PubMed ID: 38647288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of biofilm formation in natural water subjected to low-frequency electromagnetic fields.
    Mercier A; Bertaux J; Lesobre J; Gravouil K; Verdon J; Imbert C; Valette E; Héchard Y
    Biofouling; 2016; 32(3):287-99. PubMed ID: 26905178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorination of model drinking water biofilm: implications for growth and organic carbon removal.
    Butterfield PW; Camper AK; Ellis BD; Jones WL
    Water Res; 2002 Oct; 36(17):4391-405. PubMed ID: 12420943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydraulic continuity and biological effects of low strength very low frequency electromagnetic waves: Case of microbial biofilm growth in water treatment.
    Gérard M; Noamen O; Evelyne G; Eric V; Gilles C; Marc H
    Water Res; 2015 Oct; 83():184-94. PubMed ID: 26150067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temperature and biodegradable organic matter on control of biofilms by free chlorine in a model drinking water distribution system.
    Ndiongue S; Huck PM; Slawson RM
    Water Res; 2005 Mar; 39(6):953-64. PubMed ID: 15766950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in bacterial composition of biofilm in a metropolitan drinking water distribution system.
    Revetta RP; Gomez-Alvarez V; Gerke TL; Santo Domingo JW; Ashbolt NJ
    J Appl Microbiol; 2016 Jul; 121(1):294-305. PubMed ID: 27037969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unchartered waters: the unintended impacts of residual chlorine on water quality and biofilms.
    Fish KE; Reeves-McLaren N; Husband S; Boxall J
    NPJ Biofilms Microbiomes; 2020 Sep; 6(1):34. PubMed ID: 32978404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of biofilm cell quantification methods for drinking water distribution systems.
    Waller SA; Packman AI; Hausner M
    J Microbiol Methods; 2018 Jan; 144():8-21. PubMed ID: 29111400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of discontinuous chlorination on microbial production by drinking water biofilms.
    Codony F; Morató J; Mas J
    Water Res; 2005 May; 39(9):1896-906. PubMed ID: 15899288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation and fate of microorganisms and microspheres in biofilms formed in a pilot-scale water distribution system.
    Långmark J; Storey MV; Ashbolt NJ; Stenström TA
    Appl Environ Microbiol; 2005 Feb; 71(2):706-12. PubMed ID: 15691920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the ability of the bioelectric effect to eliminate mixed-species biofilms.
    Shirtliff ME; Bargmeyer A; Camper AK
    Appl Environ Microbiol; 2005 Oct; 71(10):6379-82. PubMed ID: 16204561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of 2-methylisoborneol (MIB) production by actinomycetes after cyclic chlorination in drinking water distribution systems.
    Abbaszadegan M; Yi M; Alum A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(4):365-71. PubMed ID: 25723062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.