BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30612514)

  • 1. Design of randomized controlled confirmatory trials using historical control data to augment sample size for concurrent controls.
    Yuan J; Liu J; Zhu R; Lu Y; Palm U
    J Biopharm Stat; 2019; 29(3):558-573. PubMed ID: 30612514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging historical data into oncology development programs: Two case studies of phase 2 Bayesian augmented control trial designs.
    Smith CL; Thomas Z; Enas N; Thorn K; Lahn M; Benhadji K; Cleverly A
    Pharm Stat; 2020 May; 19(3):276-290. PubMed ID: 31903699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survival trial design and monitoring using historical controls.
    Wu J; Xiong X
    Pharm Stat; 2016 Sep; 15(5):405-11. PubMed ID: 27307025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sample size calculation based on efficient unconditional tests for clinical trials with historical controls.
    Shan G; Moonie S; Shen J
    J Biopharm Stat; 2016; 26(2):240-9. PubMed ID: 25551261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic use of historical controls in clinical trials for rare disease research: A re-evaluation of the MILES trial.
    Harun N; Gupta N; McCormack FX; Macaluso M
    Clin Trials; 2023 Jun; 20(3):223-234. PubMed ID: 36927115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian adaptive randomization design incorporating propensity score-matched historical controls.
    Sawamoto R; Oba K; Matsuyama Y
    Pharm Stat; 2022 Sep; 21(5):1074-1089. PubMed ID: 35278032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimizing Patient Burden Through the Use of Historical Subject-Level Data in Innovative Confirmatory Clinical Trials: Review of Methods and Opportunities.
    Lim J; Walley R; Yuan J; Liu J; Dabral A; Best N; Grieve A; Hampson L; Wolfram J; Woodward P; Yong F; Zhang X; Bowen E
    Ther Innov Regul Sci; 2018 Sep; 52(5):546-559. PubMed ID: 29909645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sample size computation in phase II designs combining the A'Hern design and the Sargent and Goldberg design.
    Neven A; Mauer M; Hasan B; Sylvester R; Collette L
    J Biopharm Stat; 2020 Mar; 30(2):305-321. PubMed ID: 31331234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Group sequential design for historical control trials using error spending functions.
    Wu J; Li Y
    J Biopharm Stat; 2020 Mar; 30(2):351-363. PubMed ID: 31718458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and analysis of a clinical trial using previous trials as historical control.
    Schoenfeld DA; Finkelstein DM; Macklin E; Zach N; Ennist DL; Taylor AA; Atassi N;
    Clin Trials; 2019 Oct; 16(5):531-538. PubMed ID: 31256630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculating sample size in trials using historical controls.
    Zhang S; Cao J; Ahn C
    Clin Trials; 2010 Aug; 7(4):343-53. PubMed ID: 20573638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified Goldilocks Design with strict type I error control in confirmatory clinical trials.
    Zhan T; Zhang H; Hartford A; Mukhopadhyay S
    J Biopharm Stat; 2020 Sep; 30(5):821-833. PubMed ID: 32297825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sample size considerations for historical control studies with survival outcomes.
    Zhu H; Zhang S; Ahn C
    J Biopharm Stat; 2016; 26(4):657-71. PubMed ID: 26098200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using horseshoe prior for incorporating multiple historical control data in randomized controlled trials.
    Ohigashi T; Maruo K; Sozu T; Gosho M
    Stat Methods Med Res; 2022 Jul; 31(7):1392-1404. PubMed ID: 35379046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating individual historical controls and aggregate treatment effect estimates into a Bayesian survival trial: a simulation study.
    Brard C; Hampson LV; Gaspar N; Le Deley MC; Le Teuff G
    BMC Med Res Methodol; 2019 Apr; 19(1):85. PubMed ID: 31018832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a historical control group in a noninferiority trial assessing a new antibacterial treatment: A case study and discussion of practical implementation aspects.
    Dejardin D; Delmar P; Warne C; Patel K; van Rosmalen J; Lesaffre E
    Pharm Stat; 2018 Mar; 17(2):169-181. PubMed ID: 29282862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive extensions of a two-stage group sequential procedure for testing primary and secondary endpoints (I): unknown correlation between the endpoints.
    Tamhane AC; Wu Y; Mehta CR
    Stat Med; 2012 Aug; 31(19):2027-40. PubMed ID: 22729929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why caution is recommended with post-hoc individual patient matching for estimation of treatment effect in parallel-group randomized controlled trials: the case of acute stroke trials.
    Jafari N; Hearne J; Churilov L
    Stat Med; 2013 Nov; 32(25):4467-81. PubMed ID: 23761106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive propensity score procedure improves matching in prospective observational trials.
    Weber D; Uhlmann L; Schönenberger S; Kieser M
    BMC Med Res Methodol; 2019 Jul; 19(1):150. PubMed ID: 31311500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive extensions of a two-stage group sequential procedure for testing primary and secondary endpoints (II): sample size re-estimation.
    Tamhane AC; Wu Y; Mehta CR
    Stat Med; 2012 Aug; 31(19):2041-54. PubMed ID: 22733687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.