These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30612622)

  • 1. Female reproductive organ formation: A multitasking endeavor.
    Simonini S; Østergaard L
    Curr Top Dev Biol; 2019; 131():337-371. PubMed ID: 30612622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gynoecium and fruit development in Arabidopsis.
    Herrera-Ubaldo H; de Folter S
    Development; 2022 Mar; 149(5):. PubMed ID: 35226096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hormonal control of the development of the gynoecium.
    Marsch-Martínez N; de Folter S
    Curr Opin Plant Biol; 2016 Feb; 29():104-14. PubMed ID: 26799132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. JAIBA, a class-II HD-ZIP transcription factor involved in the regulation of meristematic activity, and important for correct gynoecium and fruit development in Arabidopsis.
    Zúñiga-Mayo VM; Marsch-Martínez N; de Folter S
    Plant J; 2012 Jul; 71(2):314-26. PubMed ID: 22409594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development.
    Groszmann M; Paicu T; Alvarez JP; Swain SM; Smyth DR
    Plant J; 2011 Dec; 68(5):816-29. PubMed ID: 21801252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-resolution gene expression map of the medial and lateral domains of the gynoecium of Arabidopsis.
    Luna-García V; Bernal Gallardo JJ; Rethoret-Pasty M; Pasha A; Provart NJ; de Folter S
    Plant Physiol; 2024 Apr; 195(1):410-429. PubMed ID: 38088205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis.
    Girin T; Paicu T; Stephenson P; Fuentes S; Körner E; O'Brien M; Sorefan K; Wood TA; Balanzá V; Ferrándiz C; Smyth DR; Østergaard L
    Plant Cell; 2011 Oct; 23(10):3641-53. PubMed ID: 21990939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EXPANSIN15 is involved in flower and fruit development in Arabidopsis.
    Bernal-Gallardo JJ; González-Aguilera KL; de Folter S
    Plant Reprod; 2024 Jun; 37(2):259-270. PubMed ID: 38285171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and phenotypic analyses of carpel development in Arabidopsis.
    Balanzà V; Ballester P; Colombo M; Fourquin C; Martínez-Fernández I; Ferrándiz C
    Methods Mol Biol; 2014; 1110():231-49. PubMed ID: 24395260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium.
    Reyes-Olalde JI; Zúñiga-Mayo VM; Serwatowska J; Chavez Montes RA; Lozano-Sotomayor P; Herrera-Ubaldo H; Gonzalez-Aguilera KL; Ballester P; Ripoll JJ; Ezquer I; Paolo D; Heyl A; Colombo L; Yanofsky MF; Ferrandiz C; Marsch-Martínez N; de Folter S
    PLoS Genet; 2017 Apr; 13(4):e1006726. PubMed ID: 28388635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gynoecium development: networks in Arabidopsis and beyond.
    Zúñiga-Mayo VM; Gómez-Felipe A; Herrera-Ubaldo H; de Folter S
    J Exp Bot; 2019 Mar; 70(5):1447-1460. PubMed ID: 30715461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of auxin in style development and apical-basal patterning of the Arabidopsis thaliana gynoecium.
    Ståldal V; Sundberg E
    Plant Signal Behav; 2009 Feb; 4(2):83-5. PubMed ID: 19649177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and Phenotypic Analyses of Carpel Development in Arabidopsis.
    Balanzà V; Ballester P; Colombo M; Fourquin C; Martínez-Fernández I; Ortiz-Ramírez CI; Ferrándiz C
    Methods Mol Biol; 2023; 2686():241-259. PubMed ID: 37540361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coming into bloom: the specification of floral meristems.
    Liu C; Thong Z; Yu H
    Development; 2009 Oct; 136(20):3379-91. PubMed ID: 19783733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gynoecium formation: an intimate and complicated relationship.
    Moubayidin L; Østergaard L
    Curr Opin Genet Dev; 2017 Aug; 45():15-21. PubMed ID: 28242478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis HECATE genes function in phytohormone control during gynoecium development.
    Schuster C; Gaillochet C; Lohmann JU
    Development; 2015 Oct; 142(19):3343-50. PubMed ID: 26293302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of the Putative N-Acetylornithine Deacetylase from Arabidopsis thaliana in Flowering and Fruit Development.
    Molesini B; Mennella G; Martini F; Francese G; Pandolfini T
    Plant Cell Physiol; 2015 Jun; 56(6):1084-96. PubMed ID: 25713174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seed Plant-Specific Gene Lineages Involved in Carpel Development.
    Pfannebecker KC; Lange M; Rupp O; Becker A
    Mol Biol Evol; 2017 Apr; 34(4):925-942. PubMed ID: 28087776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SPL8 and miR156-targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning.
    Xing S; Salinas M; Garcia-Molina A; Höhmann S; Berndtgen R; Huijser P
    Plant J; 2013 Aug; 75(4):566-77. PubMed ID: 23621152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental cartography: coordination via hormonal and genetic interactions during gynoecium formation.
    Deb J; Bland HM; Østergaard L
    Curr Opin Plant Biol; 2018 Feb; 41():54-60. PubMed ID: 28961459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.