BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30613144)

  • 1. Cellular effects of paclitaxel-loaded iron oxide nanoparticles on breast cancer using different 2D and 3D cell culture models.
    Lugert S; Unterweger H; Mühlberger M; Janko C; Draack S; Ludwig F; Eberbeck D; Alexiou C; Friedrich RP
    Int J Nanomedicine; 2019; 14():161-180. PubMed ID: 30613144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake.
    Poller JM; Zaloga J; Schreiber E; Unterweger H; Janko C; Radon P; Eberbeck D; Trahms L; Alexiou C; Friedrich RP
    Int J Nanomedicine; 2017; 12():3207-3220. PubMed ID: 28458541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and evaluation of aptamer-conjugated paclitaxel-loaded magnetic nanoparticles for targeted therapy on breast cancer cells.
    Khodadadi E; Mahjoub S; Arabi MS; Najafzadehvarzi H; Nasirian V
    Mol Biol Rep; 2021 Mar; 48(3):2105-2116. PubMed ID: 33635469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The theranostic efficiency of tumor-specific, pH-responsive, peptide-modified, liposome-containing paclitaxel and superparamagnetic iron oxide nanoparticles.
    Zheng XC; Ren W; Zhang S; Zhong T; Duan XC; Yin YF; Xu MQ; Hao YL; Li ZT; Li H; Liu M; Li ZY; Zhang X
    Int J Nanomedicine; 2018; 13():1495-1504. PubMed ID: 29559778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticancer activity of paclitaxel-loaded keratin nanoparticles in two-dimensional and perfused three-dimensional breast cancer models.
    Foglietta F; Spagnoli GC; Muraro MG; Ballestri M; Guerrini A; Ferroni C; Aluigi A; Sotgiu G; Varchi G
    Int J Nanomedicine; 2018; 13():4847-4867. PubMed ID: 30214193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization, Characterization and in vivo Evaluation of Paclitaxel-Loaded Folate-Conjugated Superparamagnetic Iron Oxide Nanoparticles.
    Gui G; Fan Z; Ning Y; Yuan C; Zhang B; Xu Q
    Int J Nanomedicine; 2021; 16():2283-2295. PubMed ID: 33776433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the adsorption and desorption of mitoxantrone to lauric acid/albumin coated iron oxide nanoparticles.
    Zaloga J; Feoktystov A; Garamus VM; Karawacka W; Ioffe A; Brückel T; Tietze R; Alexiou C; Lyer S
    Colloids Surf B Biointerfaces; 2018 Jan; 161():18-26. PubMed ID: 29035747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted delivery of paclitaxel drug using polymer-coated magnetic nanoparticles for fibrosarcoma therapy: in vitro and in vivo studies.
    Al-Obaidy R; Haider AJ; Al-Musawi S; Arsad N
    Sci Rep; 2023 Feb; 13(1):3180. PubMed ID: 36823237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitoxantrone-loaded superparamagnetic iron oxide nanoparticles as drug carriers for cancer therapy: Uptake and toxicity in primary human tubular epithelial cells.
    Cicha I; Scheffler L; Ebenau A; Lyer S; Alexiou C; Goppelt-Struebe M
    Nanotoxicology; 2016; 10(5):557-66. PubMed ID: 26468004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heparin-Superparamagnetic Iron Oxide Nanoparticles for Theranostic Applications.
    Massironi N; Colombo M; Cosentino C; Fiandra L; Mauri M; Kayal Y; Testa F; Torri G; Urso E; Vismara E; Vlodavsky I
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility.
    Zaloga J; Janko C; Nowak J; Matuszak J; Knaup S; Eberbeck D; Tietze R; Unterweger H; Friedrich RP; Duerr S; Heimke-Brinck R; Baum E; Cicha I; Dörje F; Odenbach S; Lyer S; Lee G; Alexiou C
    Int J Nanomedicine; 2014; 9():4847-66. PubMed ID: 25364244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-receptor-targeting multifunctional iron oxide nanoparticles drug delivery system for the treatment and imaging of prostate cancer.
    Ahmed MSU; Salam AB; Yates C; Willian K; Jaynes J; Turner T; Abdalla MO
    Int J Nanomedicine; 2017; 12():6973-6984. PubMed ID: 29033565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A light-controllable specific drug delivery nanoplatform for targeted bimodal imaging-guided photothermal/chemo synergistic cancer therapy.
    Guo Y; Wang XY; Chen YL; Liu FQ; Tan MX; Ao M; Yu JH; Ran HT; Wang ZX
    Acta Biomater; 2018 Oct; 80():308-326. PubMed ID: 30240955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superparamagnetic iron-oxide nanoparticles mPEG350- and mPEG2000-coated: cell uptake and biocompatibility evaluation.
    Silva AH; Lima E; Mansilla MV; Zysler RD; Troiani H; Pisciotti MLM; Locatelli C; Benech JC; Oddone N; Zoldan VC; Winter E; Pasa AA; Creczynski-Pasa TB
    Nanomedicine; 2016 May; 12(4):909-919. PubMed ID: 26767515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular SPION Uptake and Toxicity in Various Head and Neck Cancer Cell Lines.
    Balk M; Haus T; Band J; Unterweger H; Schreiber E; Friedrich RP; Alexiou C; Gostian AO
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33805818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic nanoparticle hyperthermia potentiates paclitaxel activity in sensitive and resistant breast cancer cells.
    Rivera-Rodriguez A; Chiu-Lam A; Morozov VM; Ishov AM; Rinaldi C
    Int J Nanomedicine; 2018; 13():4771-4779. PubMed ID: 30197514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatible superparamagnetic core-shell nanoparticles for potential use in hyperthermia-enabled drug release and as an enhanced contrast agent.
    Patil-Sen Y; Torino E; De Sarno F; Ponsiglione AM; Chhabria V; Ahmed W; Mercer T
    Nanotechnology; 2020 Sep; 31(37):375102. PubMed ID: 32392545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dextran-Benzoporphyrin Derivative (BPD) Coated Superparamagnetic Iron Oxide Nanoparticle (SPION) Micelles for T
    Yan L; Luo L; Amirshaghaghi A; Miller J; Meng C; You T; Busch TM; Tsourkas A; Cheng Z
    Bioconjug Chem; 2019 Nov; 30(11):2974-2981. PubMed ID: 31661959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High drug loading and pH-responsive targeted nanocarriers from alginate-modified SPIONs for anti-tumor chemotherapy.
    Peng N; Wu B; Wang L; He W; Ai Z; Zhang X; Wang Y; Fan L; Ye Q
    Biomater Sci; 2016 Nov; 4(12):1802-1813. PubMed ID: 27792228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetophoretic Delivery of a Tumor-Priming Agent for Chemotherapy of Metastatic Murine Breast Cancer.
    Park J; Park J; Castanares MA; Collins DS; Yeo Y
    Mol Pharm; 2019 May; 16(5):1864-1873. PubMed ID: 30916974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.