These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30613188)

  • 1. Pre-Chamber Ignition Mechanism: Simulations of Transient Autoignition in a Mixing Layer Between Reactants and Partially-Burnt Products.
    Sidey JAM; Mastorakos E
    Flow Turbul Combust; 2018; 101(4):1093-1102. PubMed ID: 30613188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Investigation of the Operating Characteristics of the Passive and Active Prechamber Jet Ignition in a Natural Gas Engine.
    Yang X; Li G; Wang P; Cheng Y; Zhao Y
    ACS Omega; 2024 Jul; 9(29):31933-31945. PubMed ID: 39072107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OH planar laser-induced fluorescence measurements with high spatio-temporal resolution for the study of auto-ignition.
    Arndt CM; Schießl R; Meier W
    Appl Opt; 2019 Apr; 58(10):C14-C22. PubMed ID: 31045026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Compression Ratio Active Pre-chamber Single-Cylinder Gasoline Engine with 50% Gross Indicated Thermal Efficiency.
    Zhan W; Chen H; Du J; Wang B; Xie F; Li Y
    ACS Omega; 2023 Feb; 8(5):4756-4766. PubMed ID: 36777567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying the influence of single droplets on fuel/air ignition in a high-pressure shock tube.
    Niegemann P; Herzler J; Fikri M; Schulz C
    Rev Sci Instrum; 2020 Oct; 91(10):105107. PubMed ID: 33138609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixture fraction measurement in turbulent non-premixed MILD jet flame using Rayleigh scattering.
    Sahoo A; Ramachandran A; Narayanaswamy V; Lyons KM
    Appl Opt; 2022 Mar; 61(9):2338-2351. PubMed ID: 35333252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Structure Characteristics of Laminar Premixed Flames of Gasoline-like Fuel Under CI Engine-Relevant Conditions.
    Zhao Y; Yue Z; Zhang Y; Wang C; Cai Y; Chen Y; Zheng Z; Wang H; Yao M
    ACS Omega; 2024 Jun; 9(24):25976-25985. PubMed ID: 38911802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of MILD Combustion of a Premixed CH
    Si J; Wang G; Mi J
    ACS Omega; 2019 Dec; 4(27):22373-22384. PubMed ID: 31911958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Study on the Autoignition of Biogas in Moderate or Intense Low Oxygen Dilution Nonpremixed Combustion Systems.
    Vasavan A; de Goey P; van Oijen J
    Energy Fuels; 2018 Aug; 32(8):8768-8780. PubMed ID: 30147233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Study of Ignition and Combustion of Hydrogen-Enriched Methane in a Sequential Combustor.
    Impagnatiello M; Malé Q; Noiray N
    Flow Turbul Combust; 2024; 112(4):1249-1273. PubMed ID: 38646586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture.
    Zeng W; Ma H; Liang Y; Hu E
    J Adv Res; 2015 Mar; 6(2):189-201. PubMed ID: 25750753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Synergy Effect of Ignition Energy and Spark Plug Gap on Methane Lean Combustion with Addressing Initial Flame Formation and Cyclic Variation.
    Zhang X; Chen L
    ACS Omega; 2023 Feb; 8(7):7036-7044. PubMed ID: 36844584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of wood combustion in a fixed bed with hot air.
    Markovic M; Bramer EA; Brem G
    Waste Manag; 2014 Jan; 34(1):49-62. PubMed ID: 24125795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical kinetic simulation of kerosene combustion in an individual flame tube.
    Zeng W; Liang S; Li HX; Ma HA
    J Adv Res; 2014 May; 5(3):357-66. PubMed ID: 25685503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dynamical instability of spark-ignited engines.
    Kantor JC
    Science; 1984 Jun; 224(4654):1233-5. PubMed ID: 17819493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section.
    Duan Q; Xiao H; Gao W; Gong L; Sun J
    J Hazard Mater; 2016 Dec; 320():18-26. PubMed ID: 27505290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.
    Aleiferis P; Charalambides A; Hardalupas Y; Soulopoulos N; Taylor AM; Urata Y
    Appl Opt; 2015 May; 54(14):4566-79. PubMed ID: 25967518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning models for the prediction of turbulent combustion speed for hydrogen-natural gas spark ignition engines.
    Issondj Banta NJ; Patrick N; Offole F; Mouangue R
    Heliyon; 2024 May; 10(9):e30497. PubMed ID: 38765124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ investigation of laser-induced ignition and the early stages of methane-air combustion at high pressures using a rapidly tuned diode laser at 2.55 microm.
    Lackner M; Forsich C; Winter F; Kopecek H; Wintner E
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Nov; 59(13):2997-3018. PubMed ID: 14583276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flamelet modeling of NO formation in laminar and turbulent diffusion flames.
    Heyl A; Bockhorn H
    Chemosphere; 2001; 42(5-7):449-62. PubMed ID: 11219669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.