BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30613937)

  • 1. Exercise-induced loading increases ilium cortical area in a selectively bred mouse model.
    Lewton KL; Ritzman T; Copes LE; Garland T; Capellini TD
    Am J Phys Anthropol; 2019 Mar; 168(3):543-551. PubMed ID: 30613937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocardiograms of mice selectively bred for high levels of voluntary exercise: Effects of short-term exercise training and the mini-muscle phenotype.
    Kay JC; Claghorn GC; Thompson Z; Hampton TG; Garland T
    Physiol Behav; 2019 Feb; 199():322-332. PubMed ID: 30508549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circulating levels of endocannabinoids respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary wheel running, and differ between the sexes.
    Thompson Z; Argueta D; Garland T; DiPatrizio N
    Physiol Behav; 2017 Mar; 170():141-150. PubMed ID: 28017680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of early-onset voluntary exercise on adult physical activity and associated phenotypes in mice.
    Acosta W; Meek TH; Schutz H; Dlugosz EM; Vu KT; Garland T
    Physiol Behav; 2015 Oct; 149():279-86. PubMed ID: 26079567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor activity, growth hormones, and systemic robusticity: An investigation of cranial vault thickness in mouse lines bred for high endurance running.
    Copes LE; Schutz H; Dlugsoz EM; Judex S; Garland T
    Am J Phys Anthropol; 2018 Jun; 166(2):442-458. PubMed ID: 29473645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of voluntary exercise on spontaneous physical activity and food consumption in mice: Results from an artificial selection experiment.
    Copes LE; Schutz H; Dlugosz EM; Acosta W; Chappell MA; Garland T
    Physiol Behav; 2015 Oct; 149():86-94. PubMed ID: 26025787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of selective breeding for voluntary exercise, chronic exercise, and their interaction on muscle attachment site morphology in house mice.
    Castro AA; Karakostis FA; Copes LE; McClendon HE; Trivedi AP; Schwartz NE; Garland T
    J Anat; 2022 Feb; 240(2):279-295. PubMed ID: 34519035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maternal exposure to Western diet affects adult body composition and voluntary wheel running in a genotype-specific manner in mice.
    Hiramatsu L; Kay JC; Thompson Z; Singleton JM; Claghorn GC; Albuquerque RL; Ho B; Ho B; Sanchez G; Garland T
    Physiol Behav; 2017 Oct; 179():235-245. PubMed ID: 28625550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preference for Western diet coadapts in High Runner mice and affects voluntary exercise and spontaneous physical activity in a genotype-dependent manner.
    Acosta W; Meek TH; Schutz H; Dlugosz EM; Garland T
    Behav Processes; 2017 Feb; 135():56-65. PubMed ID: 27908664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evolution and phenotypic plasticity of hindlimb bones in high-activity house mice.
    Kelly SA; Czech PP; Wight JT; Blank KM; Garland T
    J Morphol; 2006 Mar; 267(3):360-74. PubMed ID: 16380968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of food restriction on voluntary wheel-running behavior and body mass in selectively bred High Runner lines of mice.
    Thompson Z; Fonseca IAT; Acosta W; Idarraga L; Garland T
    Physiol Behav; 2024 Aug; 282():114582. PubMed ID: 38750805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in within-bone stiffness measured by nanoindentation in mice bred for high levels of voluntary wheel running.
    Middleton KM; Goldstein BD; Guduru PR; Waters JF; Kelly SA; Swartz SM; Garland T
    J Anat; 2010 Jan; 216(1):121-31. PubMed ID: 20402827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of long-term voluntary wheel running and selective breeding for wheel running on femoral nutrient canals.
    Tan BB; Schwartz NE; Copes LE; Garland T
    J Anat; 2024 Jun; 244(6):1015-1029. PubMed ID: 38303650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serotonin-mediated central fatigue underlies increased endurance capacity in mice from lines selectively bred for high voluntary wheel running.
    Claghorn GC; Fonseca IAT; Thompson Z; Barber C; Garland T
    Physiol Behav; 2016 Jul; 161():145-154. PubMed ID: 27106566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine stimulates voluntary wheel running in mice without increasing aerobic capacity.
    Claghorn GC; Thompson Z; Wi K; Van L; Garland T
    Physiol Behav; 2017 Mar; 170():133-140. PubMed ID: 28039074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relative importance of genetics and phenotypic plasticity in dictating bone morphology and mechanics in aged mice: evidence from an artificial selection experiment.
    Middleton KM; Shubin CE; Moore DC; Carter PA; Garland T; Swartz SM
    Zoology (Jena); 2008; 111(2):135-47. PubMed ID: 18221861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of hindlimb bone dimensions and muscle masses in house mice selectively bred for high voluntary wheel-running behavior.
    Castro AA; Garland T
    J Morphol; 2018 Jun; 279(6):766-779. PubMed ID: 29533474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mice from lines selectively bred for high voluntary wheel running exhibit lower blood pressure during withdrawal from wheel access.
    Kolb EM; Kelly SA; Garland T
    Physiol Behav; 2013 Mar; 112-113():49-55. PubMed ID: 23458632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic variations and physical activity as determinants of limb bone morphology: an experimental approach using a mouse model.
    Wallace IJ; Tommasini SM; Judex S; Garland T; Demes B
    Am J Phys Anthropol; 2012 May; 148(1):24-35. PubMed ID: 22331623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycogen storage and muscle glucose transporters (GLUT-4) of mice selectively bred for high voluntary wheel running.
    Gomes FR; Rezende EL; Malisch JL; Lee SK; Rivas DA; Kelly SA; Lytle C; Yaspelkis BB; Garland T
    J Exp Biol; 2009 Jan; 212(Pt 2):238-48. PubMed ID: 19112143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.