These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30614079)

  • 1. Differential modes of crosslinking establish spatially distinct regions of peptidoglycan in Caulobacter crescentus.
    Stankeviciute G; Miguel AV; Radkov A; Chou S; Huang KC; Klein EA
    Mol Microbiol; 2019 Apr; 111(4):995-1008. PubMed ID: 30614079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus.
    Billini M; Biboy J; Kühn J; Vollmer W; Thanbichler M
    PLoS Genet; 2019 Feb; 15(2):e1007897. PubMed ID: 30707707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caulobacter crescentus requires RodA and MreB for stalk synthesis and prevention of ectopic pole formation.
    Wagner JK; Galvani CD; Brun YV
    J Bacteriol; 2005 Jan; 187(2):544-53. PubMed ID: 15629926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of mecillinam-resistant mutants of Caulobacter crescentus deficient in stalk biosynthesis.
    Seitz LC; Brun YV
    J Bacteriol; 1998 Oct; 180(19):5235-9. PubMed ID: 9748460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caulobacter crescentus Adapts to Phosphate Starvation by Synthesizing Anionic Glycoglycerolipids and a Novel Glycosphingolipid.
    Stankeviciute G; Guan Z; Goldfine H; Klein EA
    mBio; 2019 Apr; 10(2):. PubMed ID: 30940701
    [No Abstract]   [Full Text] [Related]  

  • 6. Amino acid composition of peptidoglycan in Caulobacter crescentus.
    Fujiki K; Fukuda A; Okada Y
    J Biochem; 1976 Dec; 80(6):1453-5. PubMed ID: 1018023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar-Phosphate Metabolism Regulates Stationary-Phase Entry and Stalk Elongation in Caulobacter crescentus.
    de Young KD; Stankeviciute G; Klein EA
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of Bacterial Cell Pole Stabilization in Caulobacter crescentus Sensitizes to Outer Membrane Stress and Peptidoglycan-Directed Antibiotics.
    Vallet SU; Hansen LH; Bistrup FC; Laursen SA; Chapalay JB; Chambon M; Turcatti G; Viollier PH; Kirkpatrick CL
    mBio; 2020 May; 11(3):. PubMed ID: 32371598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in murein composition during the cell cycle of Caulobacter crescentus.
    Markiewicz Z; Bielecki J
    Acta Microbiol Pol; 1992; 41(3-4):137-43. PubMed ID: 21542393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake.
    Ireland MM; Karty JA; Quardokus EM; Reilly JP; Brun YV
    Mol Microbiol; 2002 Aug; 45(4):1029-41. PubMed ID: 12180922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stalk formation of Brevundimonas and how it compares to Caulobacter crescentus.
    Curtis PD
    PLoS One; 2017; 12(9):e0184063. PubMed ID: 28886080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shapeshifting to Survive: Shape Determination and Regulation in Caulobacter crescentus.
    Woldemeskel SA; Goley ED
    Trends Microbiol; 2017 Aug; 25(8):673-687. PubMed ID: 28359631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amidase activity is essential for medial localization of AmiC in Caulobacter crescentus.
    Dubey A; Priyadarshini R
    Curr Genet; 2018 Jun; 64(3):661-675. PubMed ID: 29167986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of stalk elongation by phosphate in Caulobacter crescentus.
    Gonin M; Quardokus EM; O'Donnol D; Maddock J; Brun YV
    J Bacteriol; 2000 Jan; 182(2):337-47. PubMed ID: 10629178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes.
    Divakaruni AV; Baida C; White CL; Gober JW
    Mol Microbiol; 2007 Oct; 66(1):174-88. PubMed ID: 17880425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus.
    Aaron M; Charbon G; Lam H; Schwarz H; Vollmer W; Jacobs-Wagner C
    Mol Microbiol; 2007 May; 64(4):938-52. PubMed ID: 17501919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus.
    Kühn J; Briegel A; Mörschel E; Kahnt J; Leser K; Wick S; Jensen GJ; Thanbichler M
    EMBO J; 2010 Jan; 29(2):327-39. PubMed ID: 19959992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function and localization dynamics of bifunctional penicillin-binding proteins in Caulobacter crescentus.
    Strobel W; Möll A; Kiekebusch D; Klein KE; Thanbichler M
    J Bacteriol; 2014 Apr; 196(8):1627-39. PubMed ID: 24532768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel peptidoglycans in Caulobacter and Asticcacaulis spp.
    Poindexter JS; Hagenzieker JG
    J Bacteriol; 1982 Apr; 150(1):332-47. PubMed ID: 6120933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FtsEX-mediated regulation of the final stages of cell division reveals morphogenetic plasticity in Caulobacter crescentus.
    Meier EL; Daitch AK; Yao Q; Bhargava A; Jensen GJ; Goley ED
    PLoS Genet; 2017 Sep; 13(9):e1006999. PubMed ID: 28886022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.