BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30614087)

  • 1. Chiroptical Properties of Twisted Acenes: Experimental and Computational Study.
    Bedi A; Gidron O
    Chemistry; 2019 Mar; 25(13):3279-3285. PubMed ID: 30614087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Consequences of Twisting Nanocarbons: Lessons from Tethered Twisted Acenes.
    Bedi A; Gidron O
    Acc Chem Res; 2019 Sep; 52(9):2482-2490. PubMed ID: 31453688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helically Locked Tethered Twistacenes.
    Bedi A; Shimon LJW; Gidron O
    J Am Chem Soc; 2018 Jul; 140(26):8086-8090. PubMed ID: 29905480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radical cations of twisted acenes: chiroptical properties and spin delocalization.
    Bedi A; Carmieli R; Gidron O
    Chem Commun (Camb); 2019 May; 55(43):6022-6025. PubMed ID: 31062015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoexcited triplet states of twisted acenes investigated by Electron Paramagnetic Resonance.
    Tait CE; Bedi A; Gidron O; Behrends J
    Phys Chem Chem Phys; 2019 Oct; 21(38):21588-21595. PubMed ID: 31539003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Twisting on the Capture and Release of Singlet Oxygen by Tethered Twisted Acenes.
    Bedi A; Manor Armon A; Gidron O
    Org Lett; 2020 Oct; 22(20):7809-7813. PubMed ID: 32966095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of axial and helical chirality on circularly polarized luminescence: lessons learned from tethered twistacenes.
    Bedi A; Schwartz G; Hananel U; Manor Armon A; Shioukhi I; Markovich G; Gidron O
    Chem Commun (Camb); 2023 Feb; 59(14):2011-2014. PubMed ID: 36723083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of twisting on the intersystem crossing in acenes: an experimental and computational study.
    Malakar P; Borin V; Bedi A; Schapiro I; Gidron O; Ruhman S
    Phys Chem Chem Phys; 2022 Jan; 24(4):2357-2362. PubMed ID: 35018908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Chalcogenophenes on Chiroptical Activity of Twisted Tetracenes: Computational Analysis, Synthesis and Crystal Structure Thereof.
    Kumar GJ; Bogoslavsky B; Debnath S; Bedi A
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bending versus Twisting Acenes - A Computational Study.
    Armon AM; Bedi A; Borin V; Schapiro I; Gidron O
    European J Org Chem; 2021 Oct; 2021(39):5424-5429. PubMed ID: 34819798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circular dichroism of (di)methyl- and diaza[6]helicenes. A combined theoretical and experimental study.
    Nakai Y; Mori T; Inoue Y
    J Phys Chem A; 2013 Jan; 117(1):83-93. PubMed ID: 23206253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Superior Synthesis of Longitudinally Twisted Acenes.
    Clevenger RG; Kumar B; Menuey EM; Lee GH; Patterson D; Kilway KV
    Chemistry; 2018 Jan; 24(1):243-250. PubMed ID: 29115021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent theoretical and experimental advances in the electronic circular dichroisms of planar chiral cyclophanes.
    Mori T; Inoue Y
    Top Curr Chem; 2011; 298():99-128. PubMed ID: 21321800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and thermodynamic stability of acenes: Theoretical study of nucleophilic and electrophilic addition.
    Reddy AR; Fridman-Marueli G; Bendikov M
    J Org Chem; 2007 Jan; 72(1):51-61. PubMed ID: 17194081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiroptical activity of Au
    Shichibu Y; Ogawa Y; Sugiuchi M; Konishi K
    Nanoscale Adv; 2021 Feb; 3(4):1005-1011. PubMed ID: 36133296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principal Singlet Fission Properties Of Twisted Acenes.
    Stanger A
    Chemphyschem; 2024 Apr; ():e202400128. PubMed ID: 38659320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Merging polyacenes and cationic helicenes: from weak to intense chiroptical properties in the far red region.
    Duwald R; Bosson J; Pascal S; Grass S; Zinna F; Besnard C; Di Bari L; Jacquemin D; Lacour J
    Chem Sci; 2019 Dec; 11(4):1165-1169. PubMed ID: 34084373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronically Excited States of Higher Acenes up to Nonacene: A Density Functional Theory/Multireference Configuration Interaction Study.
    Bettinger HF; Tönshoff C; Doerr M; Sanchez-Garcia E
    J Chem Theory Comput; 2016 Jan; 12(1):305-12. PubMed ID: 26631618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Scale Synthesis of Helicene-Like Molecules for the Design of Enantiopure Thin Films with Strong Chiroptical Activity.
    Bensalah-Ledoux A; Pitrat D; Reynaldo T; Srebro-Hooper M; Moore B; Autschbach J; Crassous J; Guy S; Guy L
    Chemistry; 2016 Mar; 22(10):3333-3346. PubMed ID: 26797752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecules-in-molecules fragment-based method for the calculation of chiroptical spectra of large molecules: Vibrational circular dichroism and Raman optical activity spectra of alanine polypeptides.
    Jose KV; Raghavachari K
    Chirality; 2016 Dec; 28(12):755-768. PubMed ID: 27897329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.