These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30614493)

  • 1. A 100 KW Class Applied-field Magnetoplasmadynamic Thruster.
    Wang B; Tang H; Wang Y; Lu C; Zhou C; Dong Y; Wang G; Cong Y; Luu D; Cao J
    J Vis Exp; 2018 Dec; (142):. PubMed ID: 30614493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and experimental results of a laser-ignited solid-propellant-fed magnetoplasmadynamic thruster.
    Ou Y; Wu J; Zhang Y
    Rev Sci Instrum; 2020 Jul; 91(7):074501. PubMed ID: 32752859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization, Test and Diagnostics of Miniaturized Hall Thrusters.
    Lim JWM; Levchenko I; Rohaizat MWAB; Huang S; Xu L; Sun YF; Potrivitu GC; Yee JS; Sim RZW; Wang Y; Levchenko S; Bazaka K; Xu S
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30829319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic nozzle radiofrequency plasma thruster approaching twenty percent thruster efficiency.
    Takahashi K
    Sci Rep; 2021 Feb; 11(1):2768. PubMed ID: 33531602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated study on the comprehensive magnetic-field configuration performance in the 150 kW superconducting magnetoplasmadynamic thruster.
    Zheng J; Liu H; Song Y; Zhou C; Li Y; Li M; Tang H; Wang G; Cong Y; Wang B; Wang Y; Wu P; Qu T; Zhu X; Zhu L; Liu F; Cheng Y; Zhao B
    Sci Rep; 2021 Oct; 11(1):20706. PubMed ID: 34667219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thirty percent conversion efficiency from radiofrequency power to thrust energy in a magnetic nozzle plasma thruster.
    Takahashi K
    Sci Rep; 2022 Nov; 12(1):18618. PubMed ID: 36357485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A survey of propulsion options for cargo and piloted missions to Mars.
    Sankaran K; Cassady L; Kodys AD; Choueiri EY
    Ann N Y Acad Sci; 2004 May; 1017():450-67. PubMed ID: 15220162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system.
    Herman DA; Gallimore AD
    Rev Sci Instrum; 2008 Jan; 79(1):013302. PubMed ID: 18248026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inline screw feeding vacuum arc thruster.
    Kronhaus I; Laterza M; Maor Y
    Rev Sci Instrum; 2017 Apr; 88(4):043505. PubMed ID: 28456244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric field measurement in microwave discharge ion thruster with electro-optic probe.
    Ise T; Tsukizaki R; Togo H; Koizumi H; Kuninaka H
    Rev Sci Instrum; 2012 Dec; 83(12):124702. PubMed ID: 23278009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Velocimetry of cathode particles in a magnetoplasmadynamic thruster discharge plasma.
    Walker J; Langendorf S; Walker M; Polzin K; Kimberlin A
    Rev Sci Instrum; 2015 Jul; 86(7):073513. PubMed ID: 26233389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of inverted pendulum thrust stand with spring-shaped wire for high power electric thrusters.
    Yamasaki J; Nonaka M; Yokota S; Shimamura K
    Rev Sci Instrum; 2023 Mar; 94(3):034501. PubMed ID: 37012807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of electric micropropulsion multimodality.
    Zolotukhin DB; Bandaru SRP; Daniels KP; Beilis II; Keidar M
    Sci Adv; 2022 Sep; 8(36):eadc9850. PubMed ID: 36070382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thrust stand based on a single point load cell for impulse measurements from plasma thrusters.
    Conde L; Lahoz MD; Grabulosa J; Hernández R; González J; Delgado M; Damba J
    Rev Sci Instrum; 2020 Feb; 91(2):023308. PubMed ID: 32113423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and Performance Evaluation of Platinum Barium Hexaaluminate Catalyst for Green Propellant Hydroxylamine Nitrate Thrusters.
    Kang S; Kwon S
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34070621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a torsional balance for thrust measurements of Hall effect and microwave-based space propulsion systems.
    Masillo S; Stubbing J; Swar K; Staab D; Garbayo A; Lucca Fabris A
    Rev Sci Instrum; 2022 Nov; 93(11):114501. PubMed ID: 36461544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Combustion Chamber Geometrical Parameters on the Decomposition and Combustion Characteristics of an ADN-Based Thruster.
    Hou Y; Yu Y; Liu X; Cao J
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high power ion thruster for deep space missions.
    Polk JE; Goebel DM; Snyder JS; Schneider AC; Johnson LK; Sengupta A
    Rev Sci Instrum; 2012 Jul; 83(7):073306. PubMed ID: 22852684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a cantilever beam thrust stand for electric propulsion thrusters.
    Zhang H; Li DT; Li H
    Rev Sci Instrum; 2020 Nov; 91(11):115104. PubMed ID: 33261444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electrodeless Lorentz force (ELF) thruster experimental facility.
    Weber TE; Slough JT; Kirtley D
    Rev Sci Instrum; 2012 Nov; 83(11):113509. PubMed ID: 23206064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.