These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30614572)

  • 1. A certain invariance property of BLUE in a whole-genome regression context.
    Gianola D; Fernando RL; Garrick DJ
    J Anim Breed Genet; 2019 Mar; 136(2):113-117. PubMed ID: 30614572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Association Studies with a Genomic Relationship Matrix: A Case Study with Wheat and Arabidopsis.
    Gianola D; Fariello MI; Naya H; Schön CC
    G3 (Bethesda); 2016 Oct; 6(10):3241-3256. PubMed ID: 27520956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances.
    Su G; Christensen OF; Janss L; Lund MS
    J Dairy Sci; 2014 Oct; 97(10):6547-59. PubMed ID: 25129495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gaussian covariance graph models accounting for correlated marker effects in genome-wide prediction.
    Martínez CA; Khare K; Rahman S; Elzo MA
    J Anim Breed Genet; 2017 Oct; 134(5):412-421. PubMed ID: 28804930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid screening for phenotype-genotype associations by linear transformations of genomic evaluations.
    Gualdrón Duarte JL; Cantet RJ; Bates RO; Ernst CW; Raney NE; Steibel JP
    BMC Bioinformatics; 2014 Jul; 15(1):246. PubMed ID: 25038782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient exact method to obtain GBLUP and single-step GBLUP when the genomic relationship matrix is singular.
    Fernando RL; Cheng H; Garrick DJ
    Genet Sel Evol; 2016 Oct; 48(1):80. PubMed ID: 27788669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values.
    Clark SA; van der Werf J
    Methods Mol Biol; 2013; 1019():321-30. PubMed ID: 23756897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-genome sequence-based genomic prediction in laying chickens with different genomic relationship matrices to account for genetic architecture.
    Ni G; Cavero D; Fangmann A; Erbe M; Simianer H
    Genet Sel Evol; 2017 Jan; 49(1):8. PubMed ID: 28093063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient unified model for genome-wide association studies and genomic selection.
    Li H; Su G; Jiang L; Bao Z
    Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lost in Translation: On the Problem of Data Coding in Penalized Whole Genome Regression with Interactions.
    Martini JWR; Rosales F; Ha NT; Heise J; Wimmer V; Kneib T
    G3 (Bethesda); 2019 Apr; 9(4):1117-1129. PubMed ID: 30760541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic dissection and prediction of feed intake and residual feed intake traits using a longitudinal model in F2 chickens.
    Emamgholi Begli H; Vaez Torshizi R; Masoudi AA; Ehsani A; Jensen J
    Animal; 2018 Sep; 12(9):1792-1798. PubMed ID: 29268803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix.
    Tiezzi F; Maltecca C
    Genet Sel Evol; 2015 Apr; 47(1):24. PubMed ID: 25886167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable selection models for genomic selection using whole-genome sequence data and singular value decomposition.
    Meuwissen THE; Indahl UG; Ødegård J
    Genet Sel Evol; 2017 Dec; 49(1):94. PubMed ID: 29281962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships.
    Vela-Avitúa S; Meuwissen TH; Luan T; Ødegård J
    Genet Sel Evol; 2015 Feb; 47(1):9. PubMed ID: 25888184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population structure in genetic studies: Confounding factors and mixed models.
    Sul JH; Martin LS; Eskin E
    PLoS Genet; 2018 Dec; 14(12):e1007309. PubMed ID: 30589851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide prediction using Bayesian additive regression trees.
    Waldmann P
    Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic regions affecting backfat thickness and cannon bone circumference identified by genome-wide association study in a Duroc pig population.
    Okumura N; Matsumoto T; Hayashi T; Hirose K; Fukawa K; Itou T; Uenishi H; Mikawa S; Awata T
    Anim Genet; 2013 Aug; 44(4):454-7. PubMed ID: 23777416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do stronger measures of genomic connectedness enhance prediction accuracies across management units?
    Yu H; Spangler ML; Lewis RM; Morota G
    J Anim Sci; 2018 Nov; 96(11):4490-4500. PubMed ID: 30165381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Use of the Linear Mixed Model in Human Genetics.
    Dandine-Roulland C; Perdry H
    Hum Hered; 2015; 80(4):196-206. PubMed ID: 27576760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic predictions across Nordic Holstein and Nordic Red using the genomic best linear unbiased prediction model with different genomic relationship matrices.
    Zhou L; Lund MS; Wang Y; Su G
    J Anim Breed Genet; 2014 Aug; 131(4):249-57. PubMed ID: 24750283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.