These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 30614589)

  • 61. Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries.
    Rana K; Singh J; Lee JT; Park JH; Ahn JH
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11158-66. PubMed ID: 24755116
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fiber-in-Tube Design of Co
    Li X; Li K; Zhu S; Fan K; Lyu L; Yao H; Li Y; Hu J; Huang H; Mai YW; Goodenough JB
    Angew Chem Int Ed Engl; 2019 May; 58(19):6239-6243. PubMed ID: 30861268
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Amorphous Fe
    Li D; Zhou J; Chen X; Song H
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30899-30907. PubMed ID: 27786458
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion Batteries with High Mass Loading.
    He Y; Bai P; Gao S; Xu Y
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41380-41388. PubMed ID: 30403338
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries.
    Yu DY; Prikhodchenko PV; Mason CW; Batabyal SK; Gun J; Sladkevich S; Medvedev AG; Lev O
    Nat Commun; 2013; 4():2922. PubMed ID: 24322450
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Scalable Solution Processing MoS
    Chao Y; Wang K; Jalili R; Morlando A; Qin C; Vijayakumar A; Wang C; Wallace GG
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46746-46755. PubMed ID: 31738045
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Flexible MnS-Carbon Fiber Hybrids for Lithium-Ion and Sodium-Ion Energy Storage.
    Gao S; Chen G; Dall'Agnese Y; Wei Y; Gao Z; Gao Y
    Chemistry; 2018 Sep; 24(51):13535-13539. PubMed ID: 29904945
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Free-standing reduced graphene oxide/MnO
    Li Y; Ye D; Shi B; Liu W; Guo R; Pei H; Xie J
    Phys Chem Chem Phys; 2017 Mar; 19(11):7498-7505. PubMed ID: 28067361
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hierarchical Nitrogen-Doped Porous Carbon Microspheres as Anode for High Performance Sodium Ion Batteries.
    Xu K; Pan Q; Zheng F; Zhong G; Wang C; Wu S; Yang C
    Front Chem; 2019; 7():733. PubMed ID: 31737606
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes.
    An W; Gao B; Mei S; Xiang B; Fu J; Wang L; Zhang Q; Chu PK; Huo K
    Nat Commun; 2019 Mar; 10(1):1447. PubMed ID: 30926799
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microcrystalline Hybridization Enhanced Coal-Based Carbon Anode for Advanced Sodium-Ion Batteries.
    Chen H; Sun N; Zhu Q; Soomro RA; Xu B
    Adv Sci (Weinh); 2022 Jul; 9(20):e2200023. PubMed ID: 35508900
    [TBL] [Abstract][Full Text] [Related]  

  • 72. High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries.
    Wang Y; Feng Z; Zhu W; Gariépy V; Gagnon C; Provencher M; Laul D; Veillette R; Trudeau ML; Guerfi A; Zaghib K
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30050008
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Carbon and Carbon Hybrid Materials as Anodes for Sodium-Ion Batteries.
    Zhong X; Wu Y; Zeng S; Yu Y
    Chem Asian J; 2018 May; 13(10):1248-1265. PubMed ID: 29430841
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A 3D-Printed, Freestanding Carbon Lattice for Sodium Ion Batteries.
    Katsuyama Y; Kudo A; Kobayashi H; Han J; Chen M; Honma I; Kaner RB
    Small; 2022 Jul; 18(29):e2202277. PubMed ID: 35726082
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries.
    Zheng T; Jia Z; Lin N; Langer T; Lux S; Lund I; Gentschev AC; Qiao J; Liu G
    Polymers (Basel); 2017 Nov; 9(12):. PubMed ID: 30965957
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hierarchical Sandwich-Like Structure of Ultrafine N-Rich Porous Carbon Nanospheres Grown on Graphene Sheets as Superior Lithium-Ion Battery Anodes.
    Xie Z; He Z; Feng X; Xu W; Cui X; Zhang J; Yan C; Carreon MA; Liu Z; Wang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10324-33. PubMed ID: 27071473
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Red Phosphorus-Embedded Cross-Link-Structural Carbon Films as Flexible Anodes for Highly Reversible Li-Ion Storage.
    Ruan J; Yuan T; Pang Y; Xu X; Yang J; Hu W; Zhong C; Ma ZF; Bi X; Zheng S
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36261-36268. PubMed ID: 28960055
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Flexible Cathode Materials Enabled by a Multifunctional Covalent Organic Gel for Lithium-Sulfur Batteries with High Areal Capacities.
    Pan H; Cheng Z; Zhong H; Wang R; Li X
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8032-8039. PubMed ID: 30702847
    [TBL] [Abstract][Full Text] [Related]  

  • 79. SnO
    Abnavi A; Sadati Faramarzi M; Abdollahi A; Ramzani R; Ghasemi S; Sanaee Z
    Nanotechnology; 2017 Jun; 28(25):255404. PubMed ID: 28475109
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Carbon Fibers Embedded With Iron Selenide (Fe
    Mahmood A; Ali Z; Tabassum H; Akram A; Aftab W; Ali R; Khan MW; Loomba S; Alluqmani A; Adil Riaz M; Yousaf M; Mahmood N
    Front Chem; 2020; 8():408. PubMed ID: 32582625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.