BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 30615056)

  • 1. CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target efficiency and specificity.
    Zhu H; Liang C
    Bioinformatics; 2019 Aug; 35(16):2783-2789. PubMed ID: 30615056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cpf1-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cpf1.
    Park J; Bae S
    Bioinformatics; 2018 Mar; 34(6):1077-1079. PubMed ID: 29186338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-gRNA Design.
    Pallarès Masmitjà M; Knödlseder N; Güell M
    Methods Mol Biol; 2019; 1961():3-11. PubMed ID: 30912036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CT-Finder: A Web Service for CRISPR Optimal Target Prediction and Visualization.
    Zhu H; Misel L; Graham M; Robinson ML; Liang C
    Sci Rep; 2016 May; 6():25516. PubMed ID: 27210050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Introns to Express RNA Guides for Cas9- and Cpf1-Mediated Multiplex Genome Editing.
    Ding D; Chen K; Chen Y; Li H; Xie K
    Mol Plant; 2018 Apr; 11(4):542-552. PubMed ID: 29462720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the CRISPR-Cpf1 system with ribozyme-processed crRNA.
    Gao Z; Herrera-Carrillo E; Berkhout B
    RNA Biol; 2018; 15(12):1458-1467. PubMed ID: 30470168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR Genome Editing Made Easy Through the CHOPCHOP Website.
    Labun K; Krause M; Torres Cleuren Y; Valen E
    Curr Protoc; 2021 Apr; 1(4):e46. PubMed ID: 33905612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target-dependent nickase activities of the CRISPR-Cas nucleases Cpf1 and Cas9.
    Fu BXH; Smith JD; Fuchs RT; Mabuchi M; Curcuru J; Robb GB; Fire AZ
    Nat Microbiol; 2019 May; 4(5):888-897. PubMed ID: 30833733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.
    Hiranniramol K; Chen Y; Liu W; Wang X
    Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing.
    Bayat H; Modarressi MH; Rahimpour A
    Curr Microbiol; 2018 Jan; 75(1):107-115. PubMed ID: 29189942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277.
    Abdulrachman D; Eurwilaichitr L; Champreda V; Chantasingh D; Pootanakit K
    BMC Biotechnol; 2021 Feb; 21(1):15. PubMed ID: 33573639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The new generation tool for CRISPR genome editing: CRISPR/Cpf1].
    Yang F; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2017 Mar; 33(3):361-371. PubMed ID: 28941336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo high-throughput profiling of CRISPR-Cpf1 activity.
    Kim HK; Song M; Lee J; Menon AV; Jung S; Kang YM; Choi JW; Woo E; Koh HC; Nam JW; Kim H
    Nat Methods; 2017 Feb; 14(2):153-159. PubMed ID: 27992409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and assessment of engineered CRISPR-Cpf1 and its use for genome editing.
    Li B; Zeng C; Dong Y
    Nat Protoc; 2018 May; 13(5):899-914. PubMed ID: 29622802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-RT: a web application for designing CRISPR-C2c2 crRNA with improved target specificity.
    Zhu H; Richmond E; Liang C
    Bioinformatics; 2018 Jan; 34(1):117-119. PubMed ID: 28968770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing broad-spectrum anti-HIV-1 gRNAs to target patient-derived variants.
    Dampier W; Sullivan NT; Chung CH; Mell JC; Nonnemacher MR; Wigdahl B
    Sci Rep; 2017 Oct; 7(1):14413. PubMed ID: 29089503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized CRISPR-Cpf1 system for genome editing in zebrafish.
    Fernandez JP; Vejnar CE; Giraldez AJ; Rouet R; Moreno-Mateos MA
    Methods; 2018 Nov; 150():11-18. PubMed ID: 29964176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems.
    Wu H; Liu Q; Shi H; Xie J; Zhang Q; Ouyang Z; Li N; Yang Y; Liu Z; Zhao Y; Lai C; Ruan D; Peng J; Ge W; Chen F; Fan N; Jin Q; Liang Y; Lan T; Yang X; Wang X; Lei Z; Doevendans PA; Sluijter JPG; Wang K; Li X; Lai L
    Cell Mol Life Sci; 2018 Oct; 75(19):3593-3607. PubMed ID: 29637228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes.
    Oliveros JC; Franch M; Tabas-Madrid D; San-León D; Montoliu L; Cubas P; Pazos F
    Nucleic Acids Res; 2016 Jul; 44(W1):W267-71. PubMed ID: 27166368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Design of gRNAs Targeting Genetic Variants Across HIV-1 Subtypes for CRISPR-Mediated Antiviral Therapy.
    Chung CH; Allen AG; Atkins A; Link RW; Nonnemacher MR; Dampier W; Wigdahl B
    Front Cell Infect Microbiol; 2021; 11():593077. PubMed ID: 33768011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.