BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30615454)

  • 1. Inhibition of Spiral Growth and Dissolution at the Brushite (010) Interface by Chondroitin 4-Sulfate.
    Zhai H; Wang L; Putnis CV
    J Phys Chem B; 2019 Jan; 123(4):845-851. PubMed ID: 30615454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of Modulation of Calcium Phosphate Pathological Mineralization by Mobile and Immobile Small-Molecule Inhibitors.
    Li M; Zhang J; Wang L; Wang B; Putnis CV
    J Phys Chem B; 2018 Feb; 122(5):1580-1587. PubMed ID: 29346735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct imaging of nanoscale dissolution of dicalcium phosphate dihydrate by an organic ligand: concentration matters.
    Qin L; Zhang W; Lu J; Stack AG; Wang L
    Environ Sci Technol; 2013; 47(23):13365-74. PubMed ID: 24251349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual roles of brushite crystals in calcium oxalate crystallization provide physicochemical mechanisms underlying renal stone formation.
    Tang R; Nancollas GH; Giocondi JL; Hoyer JR; Orme CA
    Kidney Int; 2006 Jul; 70(1):71-8. PubMed ID: 16641926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy.
    Wang L; Putnis CV
    Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promotion effect of immobilized chondroitin sulfate on intrafibrillar mineralization of collagen.
    He H; Shao C; Mu Z; Mao C; Sun J; Chen C; Tang R; Gu X
    Carbohydr Polym; 2020 Feb; 229():115547. PubMed ID: 31826527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observations of nanoscale brushite dissolution by the concentration-dependent adsorption of phosphate or phytate.
    Ge X; Fan Y; Zhai H; Chi J; Putnis CV; Wang L; Zhang W
    Water Res; 2024 Jan; 248():120851. PubMed ID: 37976955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Observation of Simultaneous Immobilization of Cadmium and Arsenate at the Brushite-Fluid Interface.
    Zhai H; Wang L; Qin L; Zhang W; Putnis CV; Putnis A
    Environ Sci Technol; 2018 Mar; 52(6):3493-3502. PubMed ID: 29488373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of inhibition mechanisms of glycosaminoglycans on calcium oxalate monohydrate crystals by atomic force microscopy.
    Shirane Y; Kurokawa Y; Miyashita S; Komatsu H; Kagawa S
    Urol Res; 1999 Dec; 27(6):426-31. PubMed ID: 10651130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humic Acids Limit the Precipitation of Cadmium and Arsenate at the Brushite-Fluid Interface.
    Zhai H; Wang L; Hövelmann J; Qin L; Zhang W; Putnis CV
    Environ Sci Technol; 2019 Jan; 53(1):194-202. PubMed ID: 30516375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vickers hardness studies of calcium oxalate monohydrate and brushite urinary stones.
    Bouropoulos N; Mouzakis DE; Bithelis G; Liatsikos E
    J Endourol; 2006 Jan; 20(1):59-63. PubMed ID: 16426135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-induced changes in chondroitin sulfate chains of urinary trypsin inhibitor.
    Masui M; Suzuki M; Fujise Y; Kanayama N
    Biochim Biophys Acta; 2001 Apr; 1546(2):261-7. PubMed ID: 11295432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constant composition dissolution of mixed phases. II. Selective dissolution of calcium phosphates.
    Tang R; Hass M; Wu W; Gulde S; Nancollas GH
    J Colloid Interface Sci; 2003 Apr; 260(2):379-84. PubMed ID: 12686190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switchable Chiral Selection of Aspartic Acids by Dynamic States of Brushite.
    Jiang W; Pan H; Zhang Z; Qiu SR; Kim JD; Xu X; Tang R
    J Am Chem Soc; 2017 Jun; 139(25):8562-8569. PubMed ID: 28590728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of urinary state of saturation with respect to calcium oxalate and brushite (CaHPO4.2H2O) in renal stone formers.
    Sriboonlue P; Prasongwattana V; Tungsanga K; Sitprija V
    J Med Assoc Thai; 1990 Dec; 73(12):684-9. PubMed ID: 2086716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms of crystallization impacting calcium phosphate cements.
    Giocondi JL; El-Dasher BS; Nancollas GH; Orme CA
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1937-61. PubMed ID: 20308110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization and promotion of recombinant human bone morphogenetic protein-2 bioactivity on extracellular matrix mimetic chondroitin sulfate-functionalized calcium phosphate cement scaffolds.
    Huang B; Wu Z; Ding S; Yuan Y; Liu C
    Acta Biomater; 2018 Apr; 71():184-199. PubMed ID: 29355717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetic Basis for Inhibition of Calcium Phosphate Biomineralization by Osteopontin.
    Li M; Wang L; Putnis CV
    J Phys Chem B; 2017 Jun; 121(24):5968-5976. PubMed ID: 28585833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased calcium affinity of a fucosylated chondroitin sulfate from sea cucumber.
    Ruggiero J; Vieira RP; Mourão PA
    Carbohydr Res; 1994 Apr; 256(2):275-87. PubMed ID: 8187103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of modified brushite to hydroxyapatite in aqueous solution: effects of potassium substitution.
    Kumar M; Xie J; Chittur K; Riley C
    Biomaterials; 1999 Aug; 20(15):1389-99. PubMed ID: 10454010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.