BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30615483)

  • 1. Raloxifene nano-micelles effect on triple-negative breast cancer is mediated through estrogen receptor-β and epidermal growth factor receptor.
    Greish K; Nehoff H; Bahman F; Pritchard T; Taurin S
    J Drug Target; 2019 Sep; 27(8):903-916. PubMed ID: 30615483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aminoflavone-loaded EGFR-targeted unimolecular micelle nanoparticles exhibit anti-cancer effects in triple negative breast cancer.
    Brinkman AM; Chen G; Wang Y; Hedman CJ; Sherer NM; Havighurst TC; Gong S; Xu W
    Biomaterials; 2016 Sep; 101():20-31. PubMed ID: 27267625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer.
    Martey O; Nimick M; Taurin S; Sundararajan V; Greish K; Rosengren RJ
    Int J Nanomedicine; 2017; 12():7225-7237. PubMed ID: 29042771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raloxifene nanomicelles reduce the growth of castrate-resistant prostate cancer.
    Pritchard T; Rosengren RJ; Greish K; Taurin S
    J Drug Target; 2016; 24(5):441-9. PubMed ID: 26373825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antitumor activity of raloxifene-targeted poly(styrene maleic acid)-poly (amide-ether-ester-imide) co-polymeric nanomicelles loaded with docetaxel in breast cancer-bearing mice.
    Enteshari S; Varshosaz J; Minayian M; Hassanzadeh F
    Invest New Drugs; 2018 Apr; 36(2):206-216. PubMed ID: 29177974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel role for raloxifene nanomicelles in management of castrate resistant prostate cancer.
    Taurin S; Nehoff H; van Aswegen T; Rosengren RJ; Greish K
    Biomed Res Int; 2014; 2014():323594. PubMed ID: 24689036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and
    Varshosaz J; Enteshari S; Hassanzadeh F; Hashemi-Beni B; Minaiyan M; Sadeghian-Rizi S
    Anticancer Agents Med Chem; 2018; 18(14):2017-2031. PubMed ID: 30205803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Targeting of Breast Cancer by Tafuramycin A Using SMA-Nanoassemblies.
    El-Deeb IM; Pittala V; Eltayeb D; Greish K
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34207832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue Distribution and Systemic Toxicity Evaluation of Raloxifene Targeted Polymeric Micelles of Poly (Styrene-Maleic Acid)-Poly (Amide- Ether-Ester-Imide)-Poly (Ethylene Glycol) Loaded With Docetaxel in Breast Cancer Bearing Mice.
    Varshosaz J; Hassanzadeh F; Hashemi-Beni B; Minaiyan M; Enteshari S
    Recent Pat Anticancer Drug Discov; 2019 Nov; 14(3):280-291. PubMed ID: 31538904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite.
    Liao WS; Ho Y; Lin YW; Naveen Raj E; Liu KK; Chen C; Zhou XZ; Lu KP; Chao JI
    Acta Biomater; 2019 Mar; 86():395-405. PubMed ID: 30660004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD44 directed nanomicellar payload delivery platform for selective anticancer effect and tumor specific imaging of triple negative breast cancer.
    Wang Z; Sau S; Alsaab HO; Iyer AK
    Nanomedicine; 2018 Jun; 14(4):1441-1454. PubMed ID: 29678787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raloxifene potentiates the effect of gefitinib in triple-negative breast cancer cell lines.
    Taurin S; Rosengren RJ
    Med Oncol; 2022 Dec; 40(1):45. PubMed ID: 36494506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raloxifene reduces triple-negative breast cancer tumor growth and decreases EGFR expression.
    Taurin S; Allen KM; Scandlyn MJ; Rosengren RJ
    Int J Oncol; 2013 Sep; 43(3):785-92. PubMed ID: 23842642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The presence and impact of estrogen metabolism on the biology of triple-negative breast cancer.
    McNamara KM; Oguro S; Omata F; Kikuchi K; Guestini F; Suzuki K; Yang Y; Abe E; Hirakawa H; Brown KA; Takanori I; Ohuchi N; Sasano H
    Breast Cancer Res Treat; 2017 Jan; 161(2):213-227. PubMed ID: 27848152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Role for ER-Beta in the Effects of Low-Density Lipoprotein Cholesterol and 27-Hydroxycholesterol on Breast Cancer Progression: Involvement of the IGF Signalling Pathway?
    Mashat RM; Zielinska HA; Holly JMP; Perks CM
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of estrogen target genes and growth by selective estrogen-receptor modulators in endometrial cancer cells.
    Dardes RC; Schafer JM; Pearce ST; Osipo C; Chen B; Jordan VC
    Gynecol Oncol; 2002 Jun; 85(3):498-506. PubMed ID: 12051881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid nanocarriers of a lipid-conjugated estrogenic derivative inhibit tumor growth and enhance cisplatin activity against triple-negative breast cancer: pharmacokinetic and efficacy evaluation.
    Andey T; Sudhakar G; Marepally S; Patel A; Banerjee R; Singh M
    Mol Pharm; 2015 Apr; 12(4):1105-20. PubMed ID: 25661724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential use of lapatinib-loaded human serum albumin nanoparticles in the treatment of triple-negative breast cancer.
    Wan X; Zheng X; Pang X; Zhang Z; Jing T; Xu W; Zhang Q
    Int J Pharm; 2015 Apr; 484(1-2):16-28. PubMed ID: 25700543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel compound LingH2-10 inhibits the growth of triple negative breast cancer cells in vitro and in vivo as a selective inverse agonist of estrogen-related receptor α.
    Ning Y; Chen H; Du Y; Ling H; Zhang L; Chen L; Qi H; Shi X; Li Q
    Biomed Pharmacother; 2017 Sep; 93():913-922. PubMed ID: 28715872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of Mitochondrial ERβ Expression Inhibits Triple-Negative Breast Cancer Tumor Progression by Activating Mitochondrial Function.
    Song IS; Jeong YJ; Jeong SH; Kim JE; Han J; Kim TH; Jang SW
    Cell Physiol Biochem; 2019; 52(3):468-485. PubMed ID: 30873822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.