These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3061567)

  • 1. The effects of gabaculine in vivo on the distribution of GABA-like immunoreactivity in the rat retina.
    Cubells JF; Walkley SU; Makman MH
    Brain Res; 1988 Aug; 458(1):82-90. PubMed ID: 3061567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of in vivo inactivation of GABA-transaminase and glutamic acid decarboxylase on levels of GABA in the rat retina.
    Cubells JF; Blanchard JS; Makman MH
    Brain Res; 1987 Sep; 419(1-2):208-15. PubMed ID: 3676726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2-amino-4-phosphonobutyric acid exerts a light-dependent effect on post-gabaculine levels of retinal gamma-aminobutyric acid (GABA): evidence that ON synaptic pathways regulate retinal GABAergic transmission.
    Cubells JF; Ndubuka C; Makman MH
    J Neurochem; 1991 Jul; 57(1):46-52. PubMed ID: 1646863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of gabaculine-induced accumulation of GABA for an index of synthesis of GABA in the retina.
    Proll MA; Morgan WW
    Neuropharmacology; 1982 Dec; 21(12):1251-5. PubMed ID: 7155308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of gamma-aminobutyric acid (GABA)-transaminase inhibitors and a GABA uptake inhibitor to investigate the influence of GABA neurons on dopamine-containing amacrine cells of the rat retina.
    Proll MA; Morgan WW
    J Pharmacol Exp Ther; 1983 Dec; 227(3):627-32. PubMed ID: 6140307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo action of enzyme-activated irreversible inhibitors of glutamic acid decarboxylase and gamma-aminobutyric acid transaminase in retina vs. brain.
    Cubells JF; Blanchard JS; Smith DM; Makman MH
    J Pharmacol Exp Ther; 1986 Aug; 238(2):508-14. PubMed ID: 3735130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-dependent transport of GABA analogues into specific cell types demonstrated at high resolution using a novel immunocytochemical strategy.
    Pow DV; Baldridge W; Crook DK
    Neuroscience; 1996 Aug; 73(4):1129-43. PubMed ID: 8809830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma-aminobutyric acid turnover in rat striatum: effects of glutamate and kainic acid.
    Giorgi O; Meek JL
    J Neurochem; 1984 Jan; 42(1):215-20. PubMed ID: 6139420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined effects of a metabolic inhibitor (gabaculine) and an uptake inhibitor (ketamine) on the gamma-aminobutyrate system in mouse brain.
    Wood JD; Geddes JW; Tsui SK; Kurylo E
    J Neurochem; 1982 Dec; 39(6):1710-5. PubMed ID: 7142997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunocytochemical evidence that vigabatrin in rats causes GABA accumulation in glial cells of the retina.
    Neal MJ; Cunningham JR; Shah MA; Yazulla S
    Neurosci Lett; 1989 Mar; 98(1):29-32. PubMed ID: 2710396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. gamma-Aminobutyric acid release from synaptosomes prepared from rats treated with isonicotinic acid hydrazide and gabaculine.
    Wood JD; Kurylo E; Lane R
    J Neurochem; 1988 Jun; 50(6):1839-43. PubMed ID: 3373216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversal by apomorphine of the gabaculine-induced GABA accumulation in mouse cortex.
    Steulet AF; Hauser K; Martin P; Leonhardt T; Bandelier V; Gunst F; Bernasconi R
    Eur J Pharmacol; 1989 Dec; 174(2-3):161-70. PubMed ID: 2630298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turnover and release of GABA in rat cortical slices: effect of a GABA-T inhibitor, gabaculine.
    Szerb JC
    Neurochem Res; 1982 Feb; 7(2):191-204. PubMed ID: 7121708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irreversible inhibition of D-3-aminoisobutyrate-pyruvate aminotransferase by gabaculine.
    Kaneko M; Fujimoto S; Kikugawa M; Tamaki N
    FEBS Lett; 1990 Dec; 276(1-2):115-8. PubMed ID: 2125004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The differential effects of GABA-transaminase inactivation in the chick retina and brain.
    Rando RR; Coburn J; Parkinson D
    J Neurochem; 1982 Oct; 39(4):1147-51. PubMed ID: 7119785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the gamma-aminobutyric acidA receptor by gamma-aminobutyric acid levels within the postsynaptic cell.
    Wood JD; Davies M
    J Neurochem; 1989 Nov; 53(5):1648-51. PubMed ID: 2552018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamine is the major precursor for GABA synthesis in rat neocortex in vivo following acute GABA-transaminase inhibition.
    Patel AB; Rothman DL; Cline GW; Behar KL
    Brain Res; 2001 Nov; 919(2):207-20. PubMed ID: 11701133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of gamma-aminobutyric acid in diabetic rat retinal Müller cells evidenced by electron microscopic immunocytochemistry.
    Ishikawa A; Ishiguro S; Tamai M
    Curr Eye Res; 1996 Sep; 15(9):958-64. PubMed ID: 8921217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of GABA following GABA-transaminase inhibition by gabaculine: a 1H and 31P NMR spectroscopic study of rat brain in vivo.
    Behar KL; Boehm D
    Magn Reson Med; 1994 Jun; 31(6):660-7. PubMed ID: 7914662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inactivation of gamma-aminobutyric acid transaminase in dissociated neuronal cultures from spinal cord.
    Rando RR; Bangerter FW; Farb DH
    J Neurochem; 1981 Mar; 36(3):985-90. PubMed ID: 7205286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.