These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30615714)

  • 1. Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and
    Dunn CE; Lertsakdadet B; Crouzet C; Bahani A; Choi B
    Biomed Opt Express; 2018 Sep; 9(9):4306-4316. PubMed ID: 30615714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable speckle plethysmography (SPG) for characterizing microvascular flow and resistance.
    Ghijsen M; Rice TB; Yang B; White SM; Tromberg BJ
    Biomed Opt Express; 2018 Aug; 9(8):3937-3952. PubMed ID: 30338166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing Remote Speckle Plethysmography and Finger-Clip Photoplethysmography with Non-Invasive Finger Arterial Pressure Pulse Waves, Regarding Morphology and Arrival Time.
    Herranz Olazabal J; Wieringa F; Hermeling E; Van Hoof C
    Bioengineering (Basel); 2023 Jan; 10(1):. PubMed ID: 36671673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speckleplethysmographic (SPG) Estimation of Heart Rate Variability During an Orthostatic Challenge.
    Dunn CE; Monroe DC; Crouzet C; Hicks JW; Choi B
    Sci Rep; 2019 Oct; 9(1):14079. PubMed ID: 31575905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography.
    Chatterjee S; Kyriacou PA
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the origin of photoplethysmography using a multiwavelength Monte Carlo model.
    Chatterjee S; Budidha K; Kyriacou PA
    Physiol Meas; 2020 Sep; 41(8):084001. PubMed ID: 32585642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Camera-Derived Photoplethysmography (rPPG) and Speckle Plethysmography (rSPG): Comparing Reflective and Transmissive Mode at Various Integration Times Using LEDs and Lasers.
    Herranz Olazábal J; Wieringa F; Hermeling E; Van Hoof C
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into the origin of remote PPG signals in visible light and infrared.
    Moço AV; Stuijk S; de Haan G
    Sci Rep; 2018 May; 8(1):8501. PubMed ID: 29855610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of Heart Rate from Photoplethysmographic Signals Using a Samsung Galaxy Note8 in Underwater Environments.
    Askarian B; Jung K; Chong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31248022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals.
    Binzoni T; Tchernin D; Hyacinthe JN; Van De Ville D; Richiardi J
    Physiol Meas; 2013 Mar; 34(3):N25-40. PubMed ID: 23443008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Momentum transfer Monte Carlo for the simulation of laser speckle imaging and its application in the skin.
    Regan C; Hayakawa C; Choi B
    Biomed Opt Express; 2017 Dec; 8(12):5708-5723. PubMed ID: 29296499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of venous insufficiency using photoplethysmography: a comparison to strain gauge plethysmography.
    Hirai M; Yoshinaga M; Nakayama R
    Angiology; 1985 Nov; 36(11):795-801. PubMed ID: 4061968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating optical path and differential pathlength factor in reflectance photoplethysmography for the assessment of perfusion.
    Chatterjee S; Abay TY; Phillips JP; Kyriacou PA
    J Biomed Opt; 2018 Jul; 23(7):1-11. PubMed ID: 29998648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous photoplethysmography and blood flow measurements towards the estimation of blood pressure using speckle contrast optical spectroscopy.
    Garrett A; Kim B; Sie EJ; Gurel NZ; Marsili F; Boas DA; Roblyer D
    Biomed Opt Express; 2023 Apr; 14(4):1594-1607. PubMed ID: 37078049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel and low-complexity peak detection algorithm for heart rate estimation from low-amplitude photoplethysmographic (PPG) signals.
    Argüello Prada EJ; Serna Maldonado RD
    J Med Eng Technol; 2018 Nov; 42(8):569-577. PubMed ID: 30920315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion.
    Lee J; Matsumura K; Yamakoshi K; Rolfe P; Tanaka S; Yamakoshi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1724-7. PubMed ID: 24110039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The time-variable photoplethysmographic signal; dependence of the heart synchronous signal on wavelength and sample volume.
    Ugnell H; Oberg PA
    Med Eng Phys; 1995 Dec; 17(8):571-8. PubMed ID: 8564151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive continuous estimation of blood flow changes in human patellar bone.
    Näslund J; Pettersson J; Lundeberg T; Linnarsson D; Lindberg LG
    Med Biol Eng Comput; 2006 Jun; 44(6):501-9. PubMed ID: 16937201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoplethysmography Signal Analysis for Optimal Region-of-Interest Determination in Video Imaging on a Built-In Smartphone under Different Conditions.
    Nam Y; Nam YC
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29048394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.