These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30615881)

  • 1. Characteristic, completion or matching timescales? An analysis of temporary boundaries in enzyme kinetics.
    Eilertsen J; Stroberg W; Schnell S
    J Theor Biol; 2019 Nov; 481():28-43. PubMed ID: 30615881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approaches for the estimation of timescales in nonlinear dynamical systems: Timescale separation in enzyme kinetics as a case study.
    Shoffner SK; Schnell S
    Math Biosci; 2017 May; 287():122-129. PubMed ID: 27613486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Kinetic Analysis of Coupled (or Auxiliary) Enzyme Reactions.
    Eilertsen J; Schnell S
    Bull Math Biol; 2018 Dec; 80(12):3154-3183. PubMed ID: 30288641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Validity of the Stochastic Quasi-Steady-State Approximation in Open Enzyme Catalyzed Reactions: Timescale Separation or Singular Perturbation?
    Eilertsen J; Schnell S
    Bull Math Biol; 2021 Nov; 84(1):7. PubMed ID: 34825985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic disorder in quasi-equilibrium enzymatic systems.
    Chaudhury S; Igoshin OA
    PLoS One; 2010 Aug; 5(8):e12364. PubMed ID: 20808776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theory of reactant-stationary kinetics for a mechanism of zymogen activation.
    Eilertsen J; Stroberg W; Schnell S
    Biophys Chem; 2018 Nov; 242():34-44. PubMed ID: 30218978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The total quasi-steady-state approximation is valid for reversible enzyme kinetics.
    Tzafriri AR; Edelman ER
    J Theor Biol; 2004 Feb; 226(3):303-13. PubMed ID: 14643644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis-Menten kinetics.
    Palsson BO; Lightfoot EN
    J Theor Biol; 1984 Nov; 111(2):273-302. PubMed ID: 6513572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-plane geometries in coupled enzyme assays.
    Eilertsen J; Stroberg W; Schnell S
    Math Biosci; 2018 Dec; 306():126-135. PubMed ID: 30261179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Practical steady-state enzyme kinetics.
    Lorsch JR
    Methods Enzymol; 2014; 536():3-15. PubMed ID: 24423262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quasi-steady-state approximations revisited: Timescales, small parameters, singularities, and normal forms in enzyme kinetics.
    Eilertsen J; Schnell S
    Math Biosci; 2020 Jul; 325():108339. PubMed ID: 32184091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-steady state assumptions for non-isolated enzyme-catalysed reactions.
    Stoleriu I; Davidson FA; Liu JL
    J Math Biol; 2004 Jan; 48(1):82-104. PubMed ID: 14685773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized rate equation for single-substrate enzyme catalyzed reactions.
    Kargi F
    Biochem Biophys Res Commun; 2009 Apr; 382(1):157-9. PubMed ID: 19265680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When does the Michaelis-Menten equation hold for fluctuating enzymes?
    Min W; Gopich IV; English BP; Kou SC; Xie XS; Szabo A
    J Phys Chem B; 2006 Oct; 110(41):20093-7. PubMed ID: 17034179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Michaelis-Menten Reaction at Low Substrate Concentrations: Pseudo-First-Order Kinetics and Conditions for Timescale Separation.
    Eilertsen J; Schnell S; Walcher S
    Bull Math Biol; 2024 May; 86(6):68. PubMed ID: 38703247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poisson indicator and Fano factor for probing dynamic disorder in single-molecule enzyme inhibition kinetics.
    Chaudhury S
    J Phys Chem B; 2014 Sep; 118(35):10405-12. PubMed ID: 25122511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic enzyme kinetics and the quasi-steady-state reductions: Application of the slow scale linear noise approximation à la Fenichel.
    Eilertsen J; Srivastava K; Schnell S
    J Math Biol; 2022 Jul; 85(1):3. PubMed ID: 35776210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbation theory in the catalytic rate constant of the Henri-Michaelis-Menten enzymatic reaction.
    Bakalis E; Kosmas M; Papamichael EM
    Bull Math Biol; 2012 Nov; 74(11):2535-46. PubMed ID: 22926529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. About and beyond the Henri-Michaelis-Menten rate equation for single-substrate enzyme kinetics.
    Bajzer Z; Strehler EE
    Biochem Biophys Res Commun; 2012 Jan; 417(3):982-5. PubMed ID: 22206668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maini's many contributions to mathematical enzyme kinetics: A review.
    Burke MA
    J Theor Biol; 2019 Nov; 481():24-27. PubMed ID: 30553723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.