BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 30615957)

  • 1. Metabolism of cyanogenic glycosides: A review.
    Cressey P; Reeve J
    Food Chem Toxicol; 2019 Mar; 125():225-232. PubMed ID: 30615957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms.
    Lei V; Amoa-Awua WK; Brimer L
    Int J Food Microbiol; 1999 Dec; 53(2-3):169-84. PubMed ID: 10634708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative metabolism of linamarin and amygdalin in hamsters.
    Frakes RA; Sharma RP; Willhite CC
    Food Chem Toxicol; 1986 May; 24(5):417-20. PubMed ID: 3744195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using (1) H-NMR spectroscopy.
    Santos Pimenta LP; Schilthuizen M; Verpoorte R; Choi YH
    Phytochem Anal; 2014; 25(2):122-6. PubMed ID: 24115144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors that determine rates of cyanogenesis in bovine ruminal fluid in vitro.
    Majak W; McDiarmid RE; Hall JW; Cheng KJ
    J Anim Sci; 1990 Jun; 68(6):1648-55. PubMed ID: 2166729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanogenic glycosides in plant-based foods available in New Zealand.
    Cressey P; Saunders D; Goodman J
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(11):1946-53. PubMed ID: 23984870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species.
    Pičmanová M; Neilson EH; Motawia MS; Olsen CE; Agerbirk N; Gray CJ; Flitsch S; Meier S; Silvestro D; Jørgensen K; Sánchez-Pérez R; Møller BL; Bjarnholt N
    Biochem J; 2015 Aug; 469(3):375-89. PubMed ID: 26205491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing the anti-cancer potential of linamarin: A computational study on design and hydrolysis mechanisms of its derivatives.
    Liyanage SD; Gunasekera D; Ratnaweera CN
    J Mol Graph Model; 2024 May; 128():108716. PubMed ID: 38277856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The enzymic hydrolysis of amygdalin.
    Haisman DR; Knight DJ
    Biochem J; 1967 May; 103(2):528-34. PubMed ID: 4291788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amygdalin: Toxicity, Anticancer Activity and Analytical Procedures for Its Determination in Plant Seeds.
    Jaszczak-Wilke E; Polkowska Ż; Koprowski M; Owsianik K; Mitchell AE; Bałczewski P
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33924691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyanogenic Eucalyptus nobilis is polymorphic for both prunasin and specific beta-glucosidases.
    Gleadow RM; Vecchies AC; Woodrow IE
    Phytochemistry; 2003 Jul; 63(6):699-704. PubMed ID: 12842143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host-microbiome metabolism of a plant toxin in bees.
    Motta EVS; Gage A; Smith TE; Blake KJ; Kwong WK; Riddington IM; Moran N
    Elife; 2022 Dec; 11():. PubMed ID: 36472498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drying and processing protocols affect the quantification of cyanogenic glucosides in forage sorghum.
    Gleadow RM; Møldrup ME; O'Donnell NH; Stuart PN
    J Sci Food Agric; 2012 Aug; 92(11):2234-8. PubMed ID: 22700371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization and catabolism of cyanogenic glycosides.
    Poulton JE
    Ciba Found Symp; 1988; 140():67-91. PubMed ID: 3073063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanogenic glucosides in grapevine: polymorphism, identification and developmental patterns.
    Franks TK; Hayasaka Y; Choimes S; van Heeswijck R
    Phytochemistry; 2005 Jan; 66(2):165-73. PubMed ID: 15652573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism.
    Takos A; Lai D; Mikkelsen L; Abou Hachem M; Shelton D; Motawia MS; Olsen CE; Wang TL; Martin C; Rook F
    Plant Cell; 2010 May; 22(5):1605-19. PubMed ID: 20453117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba.
    Hernández T; Lundquist P; Oliveira L; Pérez Cristiá R; Rodriguez E; Rosling H
    Nat Toxins; 1995; 3(2):114-7. PubMed ID: 7613736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore.
    Zagrobelny M; Olsen CE; Pentzold S; Fürstenberg-Hägg J; Jørgensen K; Bak S; Møller BL; Motawia MS
    Insect Biochem Mol Biol; 2014 Jan; 44():44-53. PubMed ID: 24269868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman spectroscopic analysis of cyanogenic glucosides in plants: development of a flow injection surface-enhanced Raman scatter (FI-SERS) method for determination of cyanide.
    Thygesen LG; Jørgensen K; Møller BL; Engelsen SB
    Appl Spectrosc; 2004 Feb; 58(2):212-7. PubMed ID: 15000716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amygdalin (Laetrile) and prunasin beta-glucosidases: distribution in germ-free rat and in human tumor tissue.
    Newmark J; Brady RO; Grimley PM; Gal AE; Waller SG; Thistlethwaite JR
    Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6513-6. PubMed ID: 6796962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.