These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms. Lei V; Amoa-Awua WK; Brimer L Int J Food Microbiol; 1999 Dec; 53(2-3):169-84. PubMed ID: 10634708 [TBL] [Abstract][Full Text] [Related]
3. Comparative metabolism of linamarin and amygdalin in hamsters. Frakes RA; Sharma RP; Willhite CC Food Chem Toxicol; 1986 May; 24(5):417-20. PubMed ID: 3744195 [TBL] [Abstract][Full Text] [Related]
4. Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using (1) H-NMR spectroscopy. Santos Pimenta LP; Schilthuizen M; Verpoorte R; Choi YH Phytochem Anal; 2014; 25(2):122-6. PubMed ID: 24115144 [TBL] [Abstract][Full Text] [Related]
5. Factors that determine rates of cyanogenesis in bovine ruminal fluid in vitro. Majak W; McDiarmid RE; Hall JW; Cheng KJ J Anim Sci; 1990 Jun; 68(6):1648-55. PubMed ID: 2166729 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of exposure to cyanogenic glycosides and potential hydrogen cyanide release in commercially available foods among the Korean population. Park H; Chung H; Choi S; Bahn YS; Son J Food Chem; 2024 Oct; 456():139872. PubMed ID: 38865818 [TBL] [Abstract][Full Text] [Related]
7. Cyanogenic glycosides in plant-based foods available in New Zealand. Cressey P; Saunders D; Goodman J Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(11):1946-53. PubMed ID: 23984870 [TBL] [Abstract][Full Text] [Related]
8. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Pičmanová M; Neilson EH; Motawia MS; Olsen CE; Agerbirk N; Gray CJ; Flitsch S; Meier S; Silvestro D; Jørgensen K; Sánchez-Pérez R; Møller BL; Bjarnholt N Biochem J; 2015 Aug; 469(3):375-89. PubMed ID: 26205491 [TBL] [Abstract][Full Text] [Related]
9. Harnessing the anti-cancer potential of linamarin: A computational study on design and hydrolysis mechanisms of its derivatives. Liyanage SD; Gunasekera D; Ratnaweera CN J Mol Graph Model; 2024 May; 128():108716. PubMed ID: 38277856 [TBL] [Abstract][Full Text] [Related]
10. The enzymic hydrolysis of amygdalin. Haisman DR; Knight DJ Biochem J; 1967 May; 103(2):528-34. PubMed ID: 4291788 [TBL] [Abstract][Full Text] [Related]
11. Amygdalin: Toxicity, Anticancer Activity and Analytical Procedures for Its Determination in Plant Seeds. Jaszczak-Wilke E; Polkowska Ż; Koprowski M; Owsianik K; Mitchell AE; Bałczewski P Molecules; 2021 Apr; 26(8):. PubMed ID: 33924691 [TBL] [Abstract][Full Text] [Related]
12. Cyanogenic Eucalyptus nobilis is polymorphic for both prunasin and specific beta-glucosidases. Gleadow RM; Vecchies AC; Woodrow IE Phytochemistry; 2003 Jul; 63(6):699-704. PubMed ID: 12842143 [TBL] [Abstract][Full Text] [Related]
13. Host-microbiome metabolism of a plant toxin in bees. Motta EVS; Gage A; Smith TE; Blake KJ; Kwong WK; Riddington IM; Moran N Elife; 2022 Dec; 11():. PubMed ID: 36472498 [TBL] [Abstract][Full Text] [Related]
14. Drying and processing protocols affect the quantification of cyanogenic glucosides in forage sorghum. Gleadow RM; Møldrup ME; O'Donnell NH; Stuart PN J Sci Food Agric; 2012 Aug; 92(11):2234-8. PubMed ID: 22700371 [TBL] [Abstract][Full Text] [Related]
15. Localization and catabolism of cyanogenic glycosides. Poulton JE Ciba Found Symp; 1988; 140():67-91. PubMed ID: 3073063 [TBL] [Abstract][Full Text] [Related]
16. Cyanogenic glucosides in grapevine: polymorphism, identification and developmental patterns. Franks TK; Hayasaka Y; Choimes S; van Heeswijck R Phytochemistry; 2005 Jan; 66(2):165-73. PubMed ID: 15652573 [TBL] [Abstract][Full Text] [Related]
17. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. Takos A; Lai D; Mikkelsen L; Abou Hachem M; Shelton D; Motawia MS; Olsen CE; Wang TL; Martin C; Rook F Plant Cell; 2010 May; 22(5):1605-19. PubMed ID: 20453117 [TBL] [Abstract][Full Text] [Related]
18. Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba. Hernández T; Lundquist P; Oliveira L; Pérez Cristiá R; Rodriguez E; Rosling H Nat Toxins; 1995; 3(2):114-7. PubMed ID: 7613736 [TBL] [Abstract][Full Text] [Related]
19. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore. Zagrobelny M; Olsen CE; Pentzold S; Fürstenberg-Hägg J; Jørgensen K; Bak S; Møller BL; Motawia MS Insect Biochem Mol Biol; 2014 Jan; 44():44-53. PubMed ID: 24269868 [TBL] [Abstract][Full Text] [Related]
20. Raman spectroscopic analysis of cyanogenic glucosides in plants: development of a flow injection surface-enhanced Raman scatter (FI-SERS) method for determination of cyanide. Thygesen LG; Jørgensen K; Møller BL; Engelsen SB Appl Spectrosc; 2004 Feb; 58(2):212-7. PubMed ID: 15000716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]