BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30616182)

  • 1. Quantifying pollutant loading from channel sources: Watershed-scale application of the River Erosion Model.
    Lammers RW; Bledsoe BP
    J Environ Manage; 2019 Mar; 234():104-114. PubMed ID: 30616182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streambanks: A net source of sediment and phosphorus to streams and rivers.
    Fox GA; Purvis RA; Penn CJ
    J Environ Manage; 2016 Oct; 181():602-614. PubMed ID: 27429360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using river sediments to analyze the driving force difference for non-point source pollution dynamics between two scales of watersheds.
    Ouyang W; Yang W; Tysklind M; Xu Y; Lin C; Gao X; Hao Z
    Water Res; 2018 Aug; 139():311-320. PubMed ID: 29660620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil erosion as a source of sediment and phosphorus in rivers and reservoirs - Watershed analyses using WaTEM/SEDEM.
    Krasa J; Dostal T; Jachymova B; Bauer M; Devaty J
    Environ Res; 2019 Apr; 171():470-483. PubMed ID: 30739021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sediment source identification and load prediction in a mixed-use Piedmont watershed, South Carolina.
    McCarney-Castle K; Childress TM; Heaton CR
    J Environ Manage; 2017 Jan; 185():60-69. PubMed ID: 28029480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large shift in source of fine sediment in the upper Mississippi river.
    Belmont P; Gran KB; Schottler SP; Wilcock PR; Day SS; Jennings C; Lauer JW; Viparelli E; Willenbring JK; Engstrom DR; Parker G
    Environ Sci Technol; 2011 Oct; 45(20):8804-10. PubMed ID: 21879734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reservoir Sedimentation and Upstream Sediment Sources: Perspectives and Future Research Needs on Streambank and Gully Erosion.
    Fox GA; Sheshukov A; Cruse R; Kolar RL; Guertault L; Gesch KR; Dutnell RC
    Environ Manage; 2016 May; 57(5):945-55. PubMed ID: 26885658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of fluvial sediment dynamics through strategic assessment of stream gaging data: A targeted watershed sediment loading analysis.
    Cho SJ; Braudrick CA; Dolph CL; Day SS; Dalzell BJ; Wilcock PR
    J Environ Manage; 2021 Jan; 277():111420. PubMed ID: 33049613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using detailed monitoring data to simulate spatial sediment loading in a watershed.
    Mukundan R; Pierson DC; Schneiderman EM; Zion MS
    Environ Monit Assess; 2015 Aug; 187(8):532. PubMed ID: 26215828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating stormwater management and stream restoration strategies for greater water quality benefits.
    Lammers RW; Dell TA; Bledsoe BP
    J Environ Qual; 2020 May; 49(3):569-581. PubMed ID: 33016400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of runoff and sediment yield in the Redrock Creek watershed using AnnAGNPS and GIS.
    Tsou MS; Zhan XY
    J Environ Sci (China); 2004; 16(5):865-7. PubMed ID: 15559830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil disturbance/restoration effects on stream sediment loading in the Tahoe Basin--detection monitoring.
    Grismer ME
    Environ Monit Assess; 2014 Jul; 186(7):4309-22. PubMed ID: 24648101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of runoff and sediment yields using the AnnAGNPS model in a Three-Gorge watershed of China.
    Hua L; He X; Yuan Y; Nan H
    Int J Environ Res Public Health; 2012 May; 9(5):1887-907. PubMed ID: 22754480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of a turfgrass sod best management practice on water quality in a suburban watershed.
    Richards CE; Munster CL; Vietor DM; Arnold JG; White R
    J Environ Manage; 2008 Jan; 86(1):229-45. PubMed ID: 17298864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in lateral floodplain connectivity accompanying stream channel evolution: Implications for sediment and nutrient budgets.
    Beck WJ; Moore PL; Schilling KE; Wolter CF; Isenhart TM; Cole KJ; Tomer MD
    Sci Total Environ; 2019 Apr; 660():1015-1028. PubMed ID: 30743899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The identification of sediment sources in a small urban watershed in southern Brazil: an application of sediment fingerprinting.
    Poleto C; Merten GH; Minella JP
    Environ Technol; 2009 Oct; 30(11):1145-53. PubMed ID: 19947145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementing landscape connectivity with topographic filtering model: A simulation of suspended sediment delivery in an agricultural watershed.
    Cho SJ; Wilcock P; Gran K
    Sci Total Environ; 2022 Aug; 836():155701. PubMed ID: 35525349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Landscape planning for agricultural nonpoint source pollution reduction III: assessing phosphorus and sediment reduction potential.
    Diebel MW; Maxted JT; Robertson DM; Han S; Vander Zanden MJ
    Environ Manage; 2009 Jan; 43(1):69-83. PubMed ID: 18521658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of sediment retention in western riverine wetlands: the Yampa River watershed, Colorado, USA.
    Arp CD; Cooper DJ
    Environ Manage; 2004 Mar; 33(3):318-30. PubMed ID: 15170244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient and particle load estimates to Lake Tahoe (CA-NV, USA) for Total Maximum Daily Load establishment.
    Sahoo GB; Nover DM; Reuter JE; Heyvaert AC; Riverson J; Schladow SG
    Sci Total Environ; 2013 Feb; 444():579-90. PubMed ID: 23314069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.