These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 30616185)

  • 1. Production of bio-oil from fast pyrolysis of biomass using a pilot-scale circulating fluidized bed reactor and its characterization.
    Park JY; Kim JK; Oh CH; Park JW; Kwon EE
    J Environ Manage; 2019 Mar; 234():138-144. PubMed ID: 30616185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ; Turn SQ; George A
    PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pilot scale oxidative fast pyrolysis of sawdust in a fluidized bed reactor: A biorefinery approach.
    Karmee SK; Kumari G; Soni B
    Bioresour Technol; 2020 Dec; 318():124071. PubMed ID: 32920336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomass Conversion to Produce Hydrocarbon Liquid Fuel Via Hot-vapor Filtered Fast Pyrolysis and Catalytic Hydrotreating.
    Wang H; Elliott DC; French RJ; Deutch S; Iisa K
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractional condensation of bio-oil vapors from pyrolysis of various sawdust wastes in a bench-scale bubbling fluidized bed reactor.
    Chai S; Kang BS; Valizadeh B; Valizadeh S; Hong J; Jae J; Andrew Lin KY; Khan MA; Jeon BH; Park YK; Seo MW
    Chemosphere; 2024 Feb; 350():141121. PubMed ID: 38185423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of bio-crude oil properties via co-pyrolysis of pine sawdust and waste polystyrene foam.
    Van Nguyen Q; Choi YS; Choi SK; Jeong YW; Kwon YS
    J Environ Manage; 2019 May; 237():24-29. PubMed ID: 30780052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres.
    Alvarez J; Amutio M; Lopez G; Santamaria L; Bilbao J; Olazar M
    Waste Manag; 2019 Feb; 85():385-395. PubMed ID: 30803593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil.
    Tshikesho RS; Kumar A; Huhnke RL; Apblett A
    Bioresour Technol; 2019 Aug; 285():121299. PubMed ID: 31003206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis Oil Biorefinery.
    Meier D
    Adv Biochem Eng Biotechnol; 2019; 166():301-337. PubMed ID: 28289770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of oxide catalysts on the properties of bio-oil from in-situ catalytic pyrolysis of palm empty fruit bunch fiber.
    Chong YY; Thangalazhy-Gopakumar S; Ng HK; Lee LY; Gan S
    J Environ Manage; 2019 Oct; 247():38-45. PubMed ID: 31229784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.
    Li N; Wang X; Bai X; Li Z; Zhang Y
    Sheng Wu Gong Cheng Xue Bao; 2015 Oct; 31(10):1501-11. PubMed ID: 26964339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation on utilization of Sesbania grandiflora residues through thermochemical conversion process for the production of value added chemicals and biofuels.
    Janardhana K; Sowmya Dhanalakshmi C; Thilagham KT; Chinnaiyan SK; Jai Shanker Pillai HP; Sathish T; Ağbulut Ü; Palani K; De Poures MV
    Sci Rep; 2024 Mar; 14(1):7283. PubMed ID: 38538627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ex-situ catalytic pyrolysis of chicken litter for bio-oil production: Experiment and characterization.
    Syazaidah I; Abu Bakar MS; Reza MS; Azad AK
    J Environ Manage; 2021 Nov; 297():113407. PubMed ID: 34346394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The slow and fast pyrolysis of cherry seed.
    Duman G; Okutucu C; Ucar S; Stahl R; Yanik J
    Bioresour Technol; 2011 Jan; 102(2):1869-78. PubMed ID: 20801019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A comparative study.
    Kabir G; Mohd Din AT; Hameed BH
    Bioresour Technol; 2017 Oct; 241():563-572. PubMed ID: 28601774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products.
    Varma AK; Thakur LS; Shankar R; Mondal P
    Waste Manag; 2019 Apr; 89():224-235. PubMed ID: 31079735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of pyrolysis bio-oil derived from intermediate pyrolysis of Aegle marmelos de-oiled cake: study on performance and emission characteristics of C.I. engine fueled with Aegle marmelos pyrolysis oil-blends.
    Paramasivam B; Kasimani R; Rajamohan S
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33806-33819. PubMed ID: 30280334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilisation of poultry industry wastes for liquid biofuel production via thermal and catalytic fast pyrolysis.
    Kantarli IC; Stefanidis SD; Kalogiannis KG; Lappas AA
    Waste Manag Res; 2019 Feb; 37(2):157-167. PubMed ID: 30249165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review.
    Wang Y; Akbarzadeh A; Chong L; Du J; Tahir N; Awasthi MK
    Chemosphere; 2022 Jun; 297():134181. PubMed ID: 35248592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.
    Choi GG; Oh SJ; Lee SJ; Kim JS
    Bioresour Technol; 2015 Feb; 178():99-107. PubMed ID: 25227587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.