These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30616198)

  • 1. Numerical investigation of flame behavior and quenching distance in randomly distributed poly-dispersed iron dust cloud combustion within a narrow channel.
    Vahabzadeh Bozorg M; Bidabadi M; Bordbar V
    J Hazard Mater; 2019 Apr; 367():482-491. PubMed ID: 30616198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modeling of velocity and number density profiles of particles across the flame propagation through a micro-iron dust cloud.
    Bidabadi M; Haghiri A; Rahbari A
    J Hazard Mater; 2010 Apr; 176(1-3):146-53. PubMed ID: 19959287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study on flames propagating through zirconium particle clouds.
    Yin Y; Sun J; Ding Y; Guo S; He X
    J Hazard Mater; 2009 Oct; 170(1):340-4. PubMed ID: 19477589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flame suppression mechanism of aluminum dust cloud by melamine cyanurate and melamine polyphosphate.
    Jiang H; Bi M; Ma D; Li B; Cong H; Gao W
    J Hazard Mater; 2019 Apr; 368():797-810. PubMed ID: 30743227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Numerical Simulation of Head-On Quenching of Statistically Planar Turbulent Premixed Methane-Air Flames Using a Detailed Chemical Mechanism.
    Lai J; Klein M; Chakraborty N
    Flow Turbul Combust; 2018; 101(4):1073-1091. PubMed ID: 30613187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ignition hazard of non-metallic dust clouds exposed to hotspots versus electrical sparks.
    Bu Y; Yuan C; Amyotte P; Li C; Cai J; Li G
    J Hazard Mater; 2019 Mar; 365():895-904. PubMed ID: 30497043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of dust dispersibility on the suppressant enhanced explosion parameter (SEEP) in flame propagation of Al dust clouds.
    Bu Y; Amyotte P; Li C; Yuan W; Yuan C; Li G
    J Hazard Mater; 2021 Feb; 404(Pt B):124119. PubMed ID: 33075625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of iron sulphide dust minimum ignition temperatures.
    Amyotte PR; Soundararajan R; Pegg MJ
    J Hazard Mater; 2003 Feb; 97(1-3):1-9. PubMed ID: 12573825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The quantitative studies on gas explosion suppression by an inert rock dust deposit.
    Song Y; Zhang Q
    J Hazard Mater; 2018 Jul; 353():62-69. PubMed ID: 29635175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Aluminum Dust Cloud Combustion Using Flame Emission Spectroscopy.
    Lee S; Noh K; Yoon W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2431-8. PubMed ID: 26669143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of unconfined dust explosions: Turbulent clustering and radiation-induced ignition.
    Liberman M; Kleeorin N; Rogachevskii I; Haugen NEL
    Phys Rev E; 2017 May; 95(5-1):051101. PubMed ID: 28618553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into suppression performance and mechanisms of ultrafine powders on wood dust deflagration under equivalent concentration.
    Huang C; Chen X; Yuan B; Zhang H; Shang S; Zhao Q; Dai H; He S; Zhang Y; Niu Y
    J Hazard Mater; 2020 Jul; 394():122584. PubMed ID: 32299041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry.
    Xi T; Di J; Li Y; Dai S; Ma C; Zhao J
    Opt Express; 2018 Oct; 26(22):28497-28504. PubMed ID: 30470021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of the influence of pipe length on explosion flame propagation in open-ended and close-ended pipes.
    Li X; Zhou N; Liu X; Huang W; Chen B; Rasouli V
    Sci Prog; 2020; 103(4):36850420961607. PubMed ID: 33092482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of entrainment and thermal properties of a cryogenic dense-gas cloud using optical measurement techniques.
    Kunsch JP; Rösgen T
    J Hazard Mater; 2006 Sep; 137(1):88-98. PubMed ID: 16621256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the Inclination Angle on Premixed Flame Dynamics in Half-Open Ducts.
    Yao Z; Deng H; Dong J; Wen X; Zhao W; Wang F; Chen G; Zhang X; Zhang Q
    ACS Omega; 2020 Sep; 5(38):24906-24915. PubMed ID: 33015510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of wood dust explosion by ultrafine magnesium hydroxide.
    Huang C; Chen X; Yuan B; Zhang H; Dai H; He S; Zhang Y; Niu Y; Shen S
    J Hazard Mater; 2019 Oct; 378():120723. PubMed ID: 31216501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields.
    Magnet C; Kuzhir P; Bossis G; Meunier A; Nave S; Zubarev A; Lomenech C; Bashtovoi V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032310. PubMed ID: 24730845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A permanent, asymmetric dust cloud around the Moon.
    Horányi M; Szalay JR; Kempf S; Schmidt J; Grün E; Srama R; Sternovsky Z
    Nature; 2015 Jun; 522(7556):324-6. PubMed ID: 26085272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.
    Chunmiao Y; Amyotte PR; Hossain MN; Li C
    J Hazard Mater; 2014 Jun; 274():322-30. PubMed ID: 24797905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.