These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30616715)

  • 21. Tissue Regeneration Enhancer Elements: A Way to Unlock Endogenous Healing Power.
    Yang K; Kang J
    Dev Dyn; 2019 Jan; 248(1):34-42. PubMed ID: 30291668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kidney regeneration in fish.
    Davidson AJ
    Nephron Exp Nephrol; 2014; 126(2):45. PubMed ID: 24854639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dedifferentiation and the role of sall4 in reprogramming and patterning during amphibian limb regeneration.
    Neff AW; King MW; Mescher AL
    Dev Dyn; 2011 May; 240(5):979-89. PubMed ID: 21305648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians.
    Yakushiji N; Suzuki M; Satoh A; Sagai T; Shiroishi T; Kobayashi H; Sasaki H; Ide H; Tamura K
    Dev Biol; 2007 Dec; 312(1):171-82. PubMed ID: 17961537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strategies for characterising cis-regulatory elements in Xenopus.
    Khokha MK; Loots GG
    Brief Funct Genomic Proteomic; 2005 May; 4(1):58-68. PubMed ID: 15975265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of the tinman homologues in Xenopus embryos.
    Sparrow DB; Cai C; Kotecha S; Latinkic B; Cooper B; Towers N; Evans SM; Mohun TJ
    Dev Biol; 2000 Nov; 227(1):65-79. PubMed ID: 11076677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells.
    Muñoz R; Edwards-Faret G; Moreno M; Zuñiga N; Cline H; Larraín J
    Dev Biol; 2015 Dec; 408(2):229-43. PubMed ID: 25797152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. XPteg (Xenopus proximal tubules-expressed gene) is essential for pronephric mesoderm specification and tubulogenesis.
    Lee SJ; Kim S; Choi SC; Han JK
    Mech Dev; 2010; 127(1-2):49-61. PubMed ID: 19909807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of Xenopus Frogs to Study Renal Development/Repair.
    Droz ST; McLaughlin KA
    Results Probl Cell Differ; 2017; 60():77-107. PubMed ID: 28409343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combinatorial control of the bradykinin B2 receptor promoter by p53, CREB, KLF-4, and CBP: implications for terminal nephron differentiation.
    Saifudeen Z; Dipp S; Fan H; El-Dahr SS
    Am J Physiol Renal Physiol; 2005 May; 288(5):F899-909. PubMed ID: 15632413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Xenopus ribosomal gene enhancers bind an essential polymerase I transcription factor, xUBF.
    Pikaard CS; McStay B; Schultz MC; Bell SP; Reeder RH
    Genes Dev; 1989 Nov; 3(11):1779-88. PubMed ID: 2606347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure, biological activity of the upstream regulatory sequence, and conserved domains of a middle molecular mass neurofilament gene of Xenopus laevis.
    Roosa JR; Gervasi C; Szaro BG
    Brain Res Mol Brain Res; 2000 Oct; 82(1-2):35-51. PubMed ID: 11042356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Nkx-dependent enhancer regulates cGATA-6 gene expression during early stages of heart development.
    Davis DL; Wessels A; Burch JB
    Dev Biol; 2000 Jan; 217(2):310-22. PubMed ID: 10625556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cooperation between ARID3A and p53 in the transcriptional activation of p21WAF1 in response to DNA damage.
    Lestari W; Ichwan SJ; Otsu M; Yamada S; Iseki S; Shimizu S; Ikeda MA
    Biochem Biophys Res Commun; 2012 Jan; 417(2):710-6. PubMed ID: 22172947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. cis-regulatory analysis of the Drosophila pdm locus reveals a diversity of neural enhancers.
    Ross J; Kuzin A; Brody T; Odenwald WF
    BMC Genomics; 2015 Sep; 16(1):700. PubMed ID: 26377945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Xenopus RNA polymerase I transcription factor, UBF, has a role in transcriptional enhancement distinct from that at the promoter.
    McStay B; Sullivan GJ; Cairns C
    EMBO J; 1997 Jan; 16(2):396-405. PubMed ID: 9029158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms.
    Beck CW; Izpisúa Belmonte JC; Christen B
    Dev Dyn; 2009 Jun; 238(6):1226-48. PubMed ID: 19280606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Notch targets Esr1 and Esr10 are differentially regulated in Xenopus neural precursors.
    Lamar E; Kintner C
    Development; 2005 Aug; 132(16):3619-30. PubMed ID: 16077089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The transcription factor basic transcription element-binding protein 1 is a direct thyroid hormone response gene in the frog Xenopus laevis.
    Furlow JD; Kanamori A
    Endocrinology; 2002 Sep; 143(9):3295-305. PubMed ID: 12193541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transgenic analysis of Dlx regulation in fish tooth development reveals evolutionary retention of enhancer function despite organ loss.
    Jackman WR; Stock DW
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19390-5. PubMed ID: 17146045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.