These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30616829)

  • 1. Detection of misfolded rhodopsin aggregates in cells by Förster resonance energy transfer.
    Gragg M; Park PS
    Methods Cell Biol; 2019; 149():87-105. PubMed ID: 30616829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Misfolded rhodopsin mutants display variable aggregation properties.
    Gragg M; Park PS
    Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt B):2938-2948. PubMed ID: 29890221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Misfolded opsin mutants display elevated β-sheet structure.
    Miller LM; Gragg M; Kim TG; Park PS
    FEBS Lett; 2015 Oct; 589(20 Pt B):3119-25. PubMed ID: 26358292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wild-type opsin does not aggregate with a misfolded opsin mutant.
    Gragg M; Kim TG; Howell S; Park PS
    Biochim Biophys Acta; 2016 Aug; 1858(8):1850-9. PubMed ID: 27117643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa.
    Liu X; Garriga P; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4554-9. PubMed ID: 8643442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Aggregation Properties of Mutant Human and Bovine Rhodopsin.
    Vasudevan S; Park PS
    Biochemistry; 2021 Jan; 60(1):6-18. PubMed ID: 33356167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autophagy in
    Wen RH; Stanar P; Tam B; Moritz OL
    Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125-->Arg in the transmembrane helix C.
    Garriga P; Liu X; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4560-4. PubMed ID: 8643443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation of rhodopsin mutants in mouse models of autosomal dominant retinitis pigmentosa.
    Vasudevan S; Senapati S; Pendergast M; Park PS
    Nat Commun; 2024 Feb; 15(1):1451. PubMed ID: 38365903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dual role for EDEM1 in the processing of rod opsin.
    Kosmaoglou M; Kanuga N; Aguilà M; Garriga P; Cheetham ME
    J Cell Sci; 2009 Dec; 122(Pt 24):4465-72. PubMed ID: 19934218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue.
    Krebs MP; Holden DC; Joshi P; Clark CL; Lee AH; Kaushal S
    J Mol Biol; 2010 Feb; 395(5):1063-78. PubMed ID: 19913029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The co-chaperone and reductase ERdj5 facilitates rod opsin biogenesis and quality control.
    Athanasiou D; Bevilacqua D; Aguila M; McCulley C; Kanuga N; Iwawaki T; Chapple JP; Cheetham ME
    Hum Mol Genet; 2014 Dec; 23(24):6594-606. PubMed ID: 25055872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the ER stress-response protein PERK in rhodopsin retinitis pigmentosa.
    Athanasiou D; Aguila M; Bellingham J; Kanuga N; Adamson P; Cheetham ME
    Hum Mol Genet; 2017 Dec; 26(24):4896-4905. PubMed ID: 29036441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration.
    Chen Y; Chen Y; Jastrzebska B; Golczak M; Gulati S; Tang H; Seibel W; Li X; Jin H; Han Y; Gao S; Zhang J; Liu X; Heidari-Torkabadi H; Stewart PL; Harte WE; Tochtrop GP; Palczewski K
    Nat Commun; 2018 May; 9(1):1976. PubMed ID: 29773803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel dominant rhodopsin mutation triggers two mechanisms of retinal degeneration and photoreceptor desensitization.
    Iakhine R; Chorna-Ornan I; Zars T; Elia N; Cheng Y; Selinger Z; Minke B; Hyde DR
    J Neurosci; 2004 Mar; 24(10):2516-26. PubMed ID: 15014127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function in rhodopsin: Mass spectrometric identification of the abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants.
    Hwa J; Klein-Seetharaman J; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4872-6. PubMed ID: 11320236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal.
    Noorwez SM; Sama RR; Kaushal S
    J Biol Chem; 2009 Nov; 284(48):33333-42. PubMed ID: 19801547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinitis pigmentosa mutants provide insight into the role of the N-terminal cap in rhodopsin folding, structure, and function.
    Opefi CA; South K; Reynolds CA; Smith SO; Reeves PJ
    J Biol Chem; 2013 Nov; 288(47):33912-33926. PubMed ID: 24106275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological clearance of misfolded rhodopsin for the treatment of RHO-associated retinitis pigmentosa.
    Liu X; Feng B; Vats A; Tang H; Seibel W; Swaroop M; Tawa G; Zheng W; Byrne L; Schurdak M; Chen Y
    FASEB J; 2020 Aug; 34(8):10146-10167. PubMed ID: 32536017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa.
    Mendes HF; Cheetham ME
    Hum Mol Genet; 2008 Oct; 17(19):3043-54. PubMed ID: 18635576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.