These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30617077)

  • 1. Direct observation of crystallization and melting with colloids.
    Hwang H; Weitz DA; Spaepen F
    Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1180-1184. PubMed ID: 30617077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stiffness of the interface between a colloidal body-centered cubic crystal and its liquid.
    Hwang H; Weitz DA; Spaepen F
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25225-25229. PubMed ID: 32973094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals.
    Wang F; Han Y
    J Chem Phys; 2019 Jan; 150(1):014504. PubMed ID: 30621411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization and reentrant melting of charged colloids in nonpolar solvents.
    Kanai T; Boon N; Lu PJ; Sloutskin E; Schofield AB; Smallenburg F; van Roij R; Dijkstra M; Weitz DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):030301. PubMed ID: 25871032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Point defects in crystals of charged colloids.
    Alkemade RM; de Jager M; van der Meer B; Smallenburg F; Filion L
    J Chem Phys; 2021 Apr; 154(16):164905. PubMed ID: 33940833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-stage crystallization of charged colloids under low supersaturation conditions.
    Kratzer K; Arnold A
    Soft Matter; 2015 Mar; 11(11):2174-82. PubMed ID: 25635694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal epitaxy: playing with the boundary conditions of colloidal crystallization.
    van Blaaderen A; Hoogenboom JP; Vossen DL; Yethiraj A; van der Horst A; Visscher K; Dogterom M
    Faraday Discuss; 2003; 123():107-19; discussion 173-92, 419-21. PubMed ID: 12638857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Template-induced crystallization of charged colloids: a molecular dynamics study.
    Ouyang W; Zou S; Zhong J; Xu S
    Soft Matter; 2023 Aug; 19(33):6329-6340. PubMed ID: 37564036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stacking in sediments of colloidal hard spheres.
    Marechal M; Hermes M; Dijkstra M
    J Chem Phys; 2011 Jul; 135(3):034510. PubMed ID: 21787016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic Phase Diagram for Nucleation and Growth of Competing Crystal Polymorphs in Charged Colloids.
    Gispen W; Dijkstra M
    Phys Rev Lett; 2022 Aug; 129(9):098002. PubMed ID: 36083657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorph selection during the crystallization of Yukawa systems.
    Desgranges C; Delhommelle J
    J Chem Phys; 2007 Feb; 126(5):054501. PubMed ID: 17302479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulation of the solid-liquid interface migration in terbium.
    Mendelev MI; Zhang F; Song H; Sun Y; Wang CZ; Ho KM
    J Chem Phys; 2018 Jun; 148(21):214705. PubMed ID: 29884043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single crystal growth and anisotropic crystal-fluid interfacial free energy in soft colloidal systems.
    Nguyen VD; Hu Z; Schall P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011607. PubMed ID: 21867183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural aging of crystals of hard-sphere colloids.
    Martelozzo VC; Schofield AB; Poon WC; Pusey PN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021408. PubMed ID: 12241179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids.
    Urrutia Bañuelos E; Contreras Aburto C; Maldonado Arce A
    J Chem Phys; 2016 Mar; 144(9):094504. PubMed ID: 26957168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The EXP pair-potential system. III. Thermodynamic phase diagram.
    Pedersen UR; Bacher AK; Schrøder TB; Dyre JC
    J Chem Phys; 2019 May; 150(17):174501. PubMed ID: 31067860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of heterogeneous crystal growth in atomic systems: insights from computer simulations.
    Gulam Razul MS; Hendry JG; Kusalik PG
    J Chem Phys; 2005 Nov; 123(20):204722. PubMed ID: 16351308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentrating colloids with electric field gradients. I. Particle transport and growth mechanism of hard-sphere-like crystals in an electric bottle.
    Leunissen ME; Sullivan MT; Chaikin PM; van Blaaderen A
    J Chem Phys; 2008 Apr; 128(16):164508. PubMed ID: 18447460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fcc
    Sanchez-Burgos I; Sanz E; Vega C; Espinosa JR
    Phys Chem Chem Phys; 2021 Sep; 23(35):19611-19626. PubMed ID: 34524277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homogeneous melting near the superheat limit of hard-sphere crystals.
    Wang F; Wang Z; Peng Y; Zheng Z; Han Y
    Soft Matter; 2018 Mar; 14(13):2447-2453. PubMed ID: 29464263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.