These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30617208)

  • 1. Neural mechanisms of infant learning: differences in frontal theta activity during object exploration modulate subsequent object recognition.
    Begus K; Southgate V; Gliga T
    Biol Lett; 2015 May; 11(5):20150041. PubMed ID: 26018832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mind-wandering does not always rhyme with proactive functioning! Changes in the temporal dynamics of the mPFC-mediated theta oscillations during moments of mind-wandering.
    Chidharom M; Bonnefond A
    Biol Psychol; 2023 Jul; 181():108598. PubMed ID: 37269897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurophysiological Measures of Proactive and Reactive Control in Negative Template Use.
    Chidharom M; Carlisle NB
    J Cogn Neurosci; 2023 Jul; 35(7):1063-1074. PubMed ID: 37052508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent attention to hetero-depth surfaces in 3-D visual space is governed by theta rhythm.
    Deng H; Gao Y; Mo L; Mo C
    Psychophysiology; 2024 May; 61(5):e14494. PubMed ID: 38041416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control in context: The theta rhythm provides evidence for reactive control but no evidence for proactive control.
    Mendl J; Banerjee S; Fischer R; Dreisbach G; Köster M
    Psychophysiology; 2024 Jun; ():e14625. PubMed ID: 38837767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examining the effects of passive and active strategies on behavior during hybrid visual memory search: evidence from eye tracking.
    Madrid J; Hout MC
    Cogn Res Princ Implic; 2019 Sep; 4(1):39. PubMed ID: 31549256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral and neural mechanisms of face-specific attention during goal-directed visual search.
    Zhang J; Zhu X; Zhou H; Wang S
    bioRxiv; 2024 Jun; ():. PubMed ID: 38979217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural oscillations guiding action during effects imagery.
    Wilken S; Böttcher A; Adelhöfer N; Raab M; Beste C; Hoffmann S
    Behav Brain Res; 2024 Jul; 469():115063. PubMed ID: 38777262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for human-centric in-vehicle lighting: part 3-Illumination preferences based on subjective ratings, eye-tracking behavior, and EEG features.
    Weirich C; Lin Y; Khanh TQ
    Front Hum Neurosci; 2023; 17():1248824. PubMed ID: 37854268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual Target Search is Neither Purely Simultaneous nor Purely Successive.
    Cave KR; Menneer T; Nomani MS; Stroud MJ; Donnelly N
    Q J Exp Psychol (Hove); 2017 Aug; ():1-29. PubMed ID: 28856981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual Search Within a Limited Window Area: Scrolling Versus Moving Window.
    Fujii Y; Morita H
    Iperception; 2020; 11(5):2041669520960739. PubMed ID: 33149878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The association between working memory precision and the nonlinear dynamics of frontal and parieto-occipital EEG activity.
    Chang WS; Liang WK; Li DH; Muggleton NG; Balachandran P; Huang NE; Juan CH
    Sci Rep; 2023 Aug; 13(1):14252. PubMed ID: 37653059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylphenidate, Guanfacine, and Combined Treatment Effects on Electroencephalography Correlates of Spatial Working Memory in Attention-Deficit/Hyperactivity Disorder.
    Michelini G; Lenartowicz A; Diaz-Fong JP; Bilder RM; McGough JJ; McCracken JT; Loo SK
    J Am Acad Child Adolesc Psychiatry; 2023 Jan; 62(1):37-47. PubMed ID: 35963558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding Object-Based Auditory Attention from Source-Reconstructed MEG Alpha Oscillations.
    de Vries IEJ; Marinato G; Baldauf D
    J Neurosci; 2021 Oct; 41(41):8603-8617. PubMed ID: 34429378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Humans can efficiently look for but not select multiple visual objects.
    Ort E; Fahrenfort JJ; Ten Cate T; Eimer M; Olivers CN
    Elife; 2019 Aug; 8():. PubMed ID: 31453807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta and Theta Oscillations Differentially Support Free Versus Forced Control over Multiple-Target Search.
    van Driel J; Ort E; Fahrenfort JJ; Olivers CNL
    J Neurosci; 2019 Feb; 39(9):1733-1743. PubMed ID: 30617208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frontal cortex differentiates between free and imposed target selection in multiple-target search.
    Ort E; Fahrenfort JJ; Reeder R; Pollmann S; Olivers CNL
    Neuroimage; 2019 Nov; 202():116133. PubMed ID: 31472251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical Oscillatory Mechanisms Supporting the Control of Human Social-Emotional Actions.
    Bramson B; Jensen O; Toni I; Roelofs K
    J Neurosci; 2018 Jun; 38(25):5739-5749. PubMed ID: 29793973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic low frequency EEG phase synchronization patterns during proactive control of task switching.
    López ME; Pusil S; Pereda E; Maestú F; Barceló F
    Neuroimage; 2019 Feb; 186():70-82. PubMed ID: 30394328
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.