These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30617315)

  • 1. Disruption of the Orion molecular core 1 by wind from the massive star θ
    Pabst C; Higgins R; Goicoechea JR; Teyssier D; Berne O; Chambers E; Wolfire M; Suri ST; Guesten R; Stutzki J; Graf UU; Risacher C; Tielens AGGM
    Nature; 2019 Jan; 565(7741):618-621. PubMed ID: 30617315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding bubbles in Orion A: [C
    Pabst CHM; Goicoechea JR; Teyssier D; Berné O; Higgins RD; Chambers ET; Kabanovic S; Güsten R; Stutzki J; Tielens AGGM
    Astron Astrophys; 2020 Jul; 639():. PubMed ID: 33173232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and inefficient star formation due to short-lived molecular clouds and rapid feedback.
    Kruijssen JMD; Schruba A; Chevance M; Longmore SN; Hygate APS; Haydon DT; McLeod AF; Dalcanton JJ; Tacconi LJ; van Dishoeck EF
    Nature; 2019 May; 569(7757):519-522. PubMed ID: 31118525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular tracers of radiative feedback in Orion (OMC-1) Widespread CH
    Goicoechea JR; Santa-Maria MG; Bron E; Teyssier D; Marcelino N; Cernicharo J; Cuadrado S
    Astron Astrophys; 2019 Feb; 622():. PubMed ID: 30820064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy.
    Geach JE; Hickox RC; Diamond-Stanic AM; Krips M; Rudnick GH; Tremonti CA; Sell PH; Coil AL; Moustakas J
    Nature; 2014 Dec; 516(7529):68-70. PubMed ID: 25471881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stellar feedback and triggered star formation in the prototypical bubble RCW 120.
    Luisi M; Anderson LD; Schneider N; Simon R; Kabanovic S; Güsten R; Zavagno A; Broos PS; Buchbender C; Guevara C; Jacobs K; Justen M; Klein B; Linville D; Röllig M; Russeil D; Stutzki J; Tiwari M; Townsley LK; Tielens AGGM
    Sci Adv; 2021 Apr; 7(15):. PubMed ID: 33837081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-similar fragmentation regulated by magnetic fields in a region forming massive stars.
    Li HB; Yuen KH; Otto F; Leung PK; Sridharan TK; Zhang Q; Liu H; Tang YW; Qiu K
    Nature; 2015 Apr; 520(7548):518-21. PubMed ID: 25822792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Molecular Cloud Lifecycle.
    Chevance M; Kruijssen JMD; Vazquez-Semadeni E; Nakamura F; Klessen R; Ballesteros-Paredes J; Inutsuka SI; Adamo A; Hennebelle P
    Space Sci Rev; 2020; 216(4):50. PubMed ID: 32377024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind.
    Bolatto AD; Warren SR; Leroy AK; Walter F; Veilleux S; Ostriker EC; Ott J; Zwaan M; Fisher DB; Weiss A; Rosolowsky E; Hodge J
    Nature; 2013 Jul; 499(7459):450-3. PubMed ID: 23887428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin of low mass stars.
    Wilking BA
    Orig Life Evol Biosph; 1997 Jun; 27(1-3):135-55. PubMed ID: 9150571
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Wallner A; Feige J; Fifield LK; Froehlich MB; Golser R; Hotchkis MAC; Koll D; Leckenby G; Martschini M; Merchel S; Panjkov S; Pavetich S; Rugel G; Tims SG
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21873-21879. PubMed ID: 32839339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compression and ablation of the photo-irradiated molecular cloud the Orion Bar.
    Goicoechea JR; Pety J; Cuadrado S; Cernicharo J; Chapillon E; Fuente A; Gerin M; Joblin C; Marcelino N; Pilleri P
    Nature; 2016 Sep; 537(7619):207-209. PubMed ID: 27509859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Star formation near the Sun is driven by expansion of the Local Bubble.
    Zucker C; Goodman AA; Alves J; Bialy S; Foley M; Speagle JS; Groβschedl J; Finkbeiner DP; Burkert A; Khimey D; Swiggum C
    Nature; 2022 Jan; 601(7893):334-337. PubMed ID: 35022612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent near-Earth supernovae probed by global deposition of interstellar radioactive (60)Fe.
    Wallner A; Feige J; Kinoshita N; Paul M; Fifield LK; Golser R; Honda M; Linnemann U; Matsuzaki H; Merchel S; Rugel G; Tims SG; Steier P; Yamagata T; Winkler SR
    Nature; 2016 Apr; 532(7597):69-72. PubMed ID: 27078565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of new stellar populations from gas accreted by massive young star clusters.
    Li C; de Grijs R; Deng L; Geller AM; Xin Y; Hu Y; Faucher-Giguère CA
    Nature; 2016 Jan; 529(7587):502-4. PubMed ID: 26819043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Habitable zones exposed: astrosphere collapse frequency as a function of stellar mass.
    Smith DS; Scalo JM
    Astrobiology; 2009 Sep; 9(7):673-81. PubMed ID: 19778278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Massive star formation in 100,000 years from turbulent and pressurized molecular clouds.
    McKee CF; Tan JC
    Nature; 2002 Mar; 416(6876):59-61. PubMed ID: 11882889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A minimum column density of 1 g cm(-2) for massive star formation.
    Krumholz MR; McKee CF
    Nature; 2008 Feb; 451(7182):1082-4. PubMed ID: 18305539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the nature of supernova progenitors.
    Groh JH
    Philos Trans A Math Phys Eng Sci; 2017 Oct; 375(2105):. PubMed ID: 28923996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong stellar winds.
    Conti PS; McCray R
    Science; 1980 Apr; 208(4439):9-17. PubMed ID: 17731549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.